1 |
JIN S S, KIM S T, PARK Y H. Combining point and distributed strain sensor for complementary data-fusion: A multi-fidelity approach[J]. Mechanical Systems and Signal Processing, 2021, 157: 107725.
|
2 |
GUIVARCH D, MERMOZ E, MARINO Y, et al. Creation of helicopter dynamic systems digital twin using multibody simulations[J]. CIRP Annals, 2019, 68(1): 133-136.
|
3 |
LUO W, HU T, YE Y, et al. A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974.
|
4 |
LI L, LEI B, MAO C. Digital twin in smart manufacturing[J]. Journal of Industrial Information Integration, 2022, 26: 100289.
|
5 |
LI C, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941.
|
6 |
LIM K Y H, ZHENG P, CHEN C H, et al. A digital twin-enhanced system for engineering product family design and optimization[J]. Journal of Manufacturing Systems, 2020, 57: 82-93.
|
7 |
TAO F, ZHANG H, LIU A, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415.
|
8 |
宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325.
|
|
SONG X G, LAI X N, HE X W, et al. Key technologies of shape-performance integrated digital twin for major equipment [J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325 (in Chinese).
|
9 |
WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703.
|
10 |
XIA M, SHAO H, WILLIAMS D, et al. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning[J]. Reliability Engineering & System Safety, 2021, 215: 107938.
|
11 |
董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981.
|
|
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Journal of Aeronautics, 2021, 42(3): 023981 (in Chinese).
|
12 |
李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435.
|
|
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese).
|
13 |
TIAN K, LI Z C, HUANG L, et al. Enhanced variable-fidelity surrogate-based optimization framework by Gaussian process regression and fuzzy clustering[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113045.
|
14 |
LI Z C, ZHANG S, LI H Q, et al. On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks[J]. Advanced Engineering Informatics, 2022, 53: 101689.
|
15 |
GHOSH M, WU L, HAO Q, et al. A random forest with multi-fidelity Gaussian process leaves for modeling multi-fidelity data with heterogeneity[J]. Computers & Industrial Engineering, 2022, 174: 108746.
|
16 |
CHEN J, MENG C, GAO Y, et al. Multi-fidelity neural optimization machine for Digital Twins[J]. Structural and Multidisciplinary Optimization, 2022, 65(12): 1-15.
|
17 |
LAI X, HE X, PANG Y, et al. A scalable digital twin framework based on a novel adaptive ensemble surrogate model[J]. Journal of Mechanical Design, 2023, 145(2): 021701.
|
18 |
LI K, WANG S, LIU Y, et al. An integrated surrogate modeling method for fusing noisy and noise-free data[J]. Journal of Mechanical Design, 2022, 146(6): 061701.
|
19 |
CAWLEY G C, TALBOT N L C. On over-fitting in model selection and subsequent selection bias in performance evaluation[J]. The Journal of Machine Learning Research, 2010, 11: 2079-2107.
|
20 |
NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21.
|
21 |
KRSTAJIC D, BUTUROVIC L J, LEAHY D E, et al. Cross-validation pitfalls when selecting and assessing regression and classification models[J]. Journal of Cheminformatics, 2014, 6(1): 1-15.
|
22 |
SATAPATHY S K, BHOI A K, LOGANATHAN D, et al. Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal[J]. Biomedical Signal Processing and Control, 2021, 69: 102898.
|
23 |
GANAIE M A, HU M, MALIK A K, et al. Ensemble deep learning: A review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105151.
|
24 |
TERRAULT N A, HASSANEIN T I. Management of the patient with SVR[J]. Journal of Hepatology, 2016, 65(1): S120-S129.
|
25 |
LI H Q, LI Z C, CHENG Z Z, et al. A data-driven modelling and optimization framework for variable-thickness integrally stiffened shells[J]. Aerospace Science and Technology, 2022, 129: 107839.
|
26 |
HAO W Q, TAN L, YANG X G, et al. A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace[J]. International Journal of Fatigue, 2023, 170: 107536.
|
27 |
POH C Q X, UBEYNARAYANA C U, GOH Y M. Safety leading indicators for construction sites: A machine learning approach[J]. Automation in Construction, 2018, 93: 375-386.
|
28 |
TIAN K, LI Z C, ZHANG J X, et al. Transfer learning based variable-fidelity surrogate model for shell buckling prediction[J]. Composite Structures, 2021, 273: 114285.
|
29 |
SONG X G, LV L Y, SUN W, et al. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization, 2019, 60: 965-981.
|
30 |
ZHOU Q, SHAO X Y, JIANG P, et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics, 2016, 30(3): 283-297.
|
31 |
TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133: 216-225.
|