收稿日期:
2023-09-04
修回日期:
2023-09-22
接受日期:
2023-12-19
出版日期:
2024-03-15
发布日期:
2023-12-26
通讯作者:
黄领才
E-mail:huanglc003@avic.com
Received:
2023-09-04
Revised:
2023-09-22
Accepted:
2023-12-19
Online:
2024-03-15
Published:
2023-12-26
Contact:
Lingcai HUANG
E-mail:huanglc003@avic.com
摘要:
近年来,纤维增强聚合物(FRP)复合材料凭借其卓越的力学性能和显著的重量优势,应用范围日益广泛。然而由于其复杂的损伤模式,需使用先进的损伤表征方法防止潜在的灾难性后果。目前,各种无损检测与评价(NDT&E)技术已被广泛应用于FRP复合材料的损伤检测,这些技术经过不断的发展和改进已能提供可靠的结构检测,尤其是在航空航天领域。本文首先对FRP复合材料损伤诊断领域无损检测技术的最新进展进行全面概述,分别对声发射测试、超声波测试、红外成像测试、激光错位散斑干涉测试、数字图像相关测试、涡流检测、太赫兹成像检测、微波检测、电学层析成像检测和X射线10种无损检测技术进行深入分析和评价,并探讨每种技术的优点和局限性。随后根据特定的准则,采用层次分析法对无损检测技术进行分析。然而由于单一无损检测技术难以实现缺陷识别、定位、分类和评估等功能的统一,因此最后提出了一种组合无损检测的技术方案,以期在实际工程应用中取得更好的效果。
中图分类号:
黄领才. 纤维增强聚合物复合材料无损检测方法进展[J]. 航空学报, 2024, 45(5): 529697-529697.
Lingcai HUANG. Review of nondestructive testing methods for fiber⁃reinforced polymer composites[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529697-529697.
表1
复材结构使用声发射的损伤诊断
文献 | 测试类型 | 应用方法 | 使用参数 | 损伤识别模式 | 损伤定位 |
---|---|---|---|---|---|
[ | 准静态压痕和低速冲击 | Sentry函数法、小波包变换 | 能量 | 纤维断裂 | × |
[ | 拉伸 | 能量累积 | 分层 | √ | |
[ | 拉伸 | 模态声发射连续小波变换 | 能量 | √ | |
[ | Ⅱ型准静态和疲劳 | 能量 | 尖和条纹 | × | |
[ | 拉伸和弯曲 | K均值 | 事件 | 界面破坏 | × |
[ | 疲劳 | 小波包分解 | 事件 | 基体裂纹、纤维/基体界面脱粘、 粘接接头剪切破坏、纤维断裂 | √ |
[ | 三点弯曲 | 玻璃纤维增强聚合物 | b值、升角、平均频率、 频率谱密度和c值 | × | |
[ | 拉伸 | 统计多变量分析 | 事件 | 基体裂纹 | × |
[ | 拉伸 | K均值和主元分析 | 振幅和峰值频率 | 基体开裂、纤维/基材撕裂、分层纤维断裂 | √ |
[ | 弯曲 | ΔT测绘 | 事件 | 脱粘、纤维失效 | √ |
[ | 拉伸 | 聚类分析方法 | 事件 | 基体裂纹 | √ |
[ | 拉伸 | K均值和主元分析 | 事件 | 分层 | √ |
表2
超声波测试损伤表征
测试方法 | 文献 | 测试类型 | 损伤评估方法 | 指标参数 | 损伤识别 模式 | 损伤定位 | 优势 | 局限性 |
---|---|---|---|---|---|---|---|---|
接触式 | [ | 冲击试验 | 红外摄像机、阵列超声波 | 红外图像 | 分层 | √ | 提供快速检查和即时结果 能估计缺陷的严重程度(大小、形状、方向) 高穿透能力可检测深度缺陷 | 需耦合剂确保超声波的充分传输 需小心处理以免损坏测试对象 需接近被检物体表面进行测试 |
[ | 低速冲击损伤 | 冲击能量相关 | C扫 | 纤维断裂 | √ | |||
[ | 落锤冲击试验 | 阵列超声波 | C扫 | 分层 | √ | |||
[ | 拉伸试验 | 超声双折射法 | 衰减系数变化、剪切模比 | 裂纹 | √ | |||
空气耦合式 | [ | 冲击试验 | 激光测振仪 | 表面振动 | 分层 | √ | 非接触式检验 快速检测无触点联轴器 | 声学失配大 功率要求高 高频时衰减损失大 |
[ | 多向相邻波减法、可变时窗振幅映射、超声光谱成像、小波变换超声传播成像 | 超声波能 | 裂纹、分层 | √ | ||||
浸入式 | [ | 拉伸试验 | K均值 | 密度 | 基体裂纹 | √ | 非接触式检验 快速检查 自动检测能力 提供一致的耦合 便于使用聚焦 光束 无需移动传感器即可改变波入射角的简单性 | 不适合检查大型结构 |
[ | 低速冲击试验、拉伸试验 | 连续损伤力学理论 | 信号速度 | √ | ||||
[ | 准静态缩进、低速冲击试验 | 连续损伤力学理论 | 信号速度 | √ |
表3
利用热成像技术进行损伤评估
激励源 | 文献 | 测试类型 | 热像技术 | 损伤评估方法 | 参数 | 损伤模式 |
---|---|---|---|---|---|---|
光学灯 | [ | 热暴露 | 脉冲温度记录 | 热扩散率测量 | 热扩散性 | 热损伤 |
[ | 拉伸 | 锁定 | 研究试样的冷却行为 | 冷却速率 | ||
[ | 脉冲相位热 成像 | 全因子分析 | 相位图像对比度 | |||
[ | 脉冲温度记录 | 基于区域的卷积神经网络 | 层析图像 | 人造损伤 | ||
[ | 脉冲温度记录 | 深度学习 | 热分析图 | 内粘接精度为88% | ||
涡流 | [ | 冲击试验 | 涡流脉冲热 成像 | 主元分析 | 热分析图 | 冲击损伤 |
[ | 涡流脉冲热 成像 | 热对比评价 | 热分析图 | 内部缺陷 | ||
[ | 涡流脉冲压缩热成像 | 核主元分析 | 热分析图 | 人造分层 | ||
激光 | [ | 激光斑 | 标准差变化 | 标准差 | 人造分层 | |
[ | 激光阵列扫描热成像 | 快速傅里叶变换和主元分析 | 热信号信噪比 | 平底孔缺陷 | ||
[ | 落锤冲击 | 线扫描热成像 | 动态脉冲相位热成像 | 热成像数据序列 | 平底孔肉眼不可见损伤 | |
机械振动 | [ | 自热的振动热 像仪 | 自热温度演化曲线的热梯度估计 | 热分析图 | 平底孔缺陷 | |
[ | 自热的振动热 像仪 | 统计特征、温度曲线、趋势估计、相似度映射 | 热分析图 | 人造切痕 | ||
[ | 冲击试验 | 基于自热的振动热像仪 | 统计分析、导数、小波变换、主成分热成像、 偏最小二乘回归、热成像信号重建 | 热分析图 | 低速冲击损伤 |
1 | ABRAMOVICH H. Introduction to composite materials[M]∥ Stability and Vibrations of Thin Walled Composite Structures. Amsterdam: Elsevier, 2017: 1-47. |
2 | CASTELLANO A, FRADDOSIO A, PICCIONI M D. Quantitative analysis of QSI and LVI damage in GFRP unidirectional composite laminates by a new ultrasonic approach[J]. Composites Part B: Engineering, 2018, 151: 106-117. |
3 | TOMAR S S, ZAFAR S, TALHA M, et al. State of the art of composite structures in non-deterministic framework: A review[J]. Thin-Walled Structures, 2018, 132: 700-716. |
4 | MEOLA C, BOCCARDI S, CARLOMAGNO G M. Composite material overview and its testing for aerospace components[M]∥ Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 69-108. |
5 | KAMATH G M, SUNDARAM R, GUPTA N, et al. Damage studies in composite structures for structural health monitoring using strain sensors[J]. Structural Health Monitoring, 2010, 9(6): 497-512. |
6 | ADAMUS K, ADAMUS J, LACKI J. Ultrasonic testing of thin walled components made of aluminum based laminates[J]. Composite Structures, 2018, 202: 95-101. |
7 | SAEEDIFAR M, MANSVELDER J, MOHAMMADI R, et al. Using passive and active acoustic methods for impact damage assessment of composite structures[J]. Composite Structures, 2019, 226: 111252. |
8 | TALREJA R, PHAN N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage[J]. Composite Structures, 2019, 219: 1-7. |
9 | WRONKOWICZ A, DRAGAN K, LIS K. Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures[J]. Composite Structures, 2018, 203: 71-84. |
10 | ICDNT. ICNDT guide to qualification and certification of personnel for NDT ICNDT guide to qualification and certification of personnel[EB/OL]. (2016-07-19) [2023-06-01]. . |
11 | CRALL M D, LANEY S G, KELLER M W. Multimodal damage detection in self-sensing fiber reinforced composites[J]. Advanced Functional Materials, 2019, 29(12): 1806634. |
12 | DIAMANTI K, SOUTIS C. Structural health monitoring techniques for aircraft composite structures[J]. Progress in Aerospace Sciences, 2010, 46(8): 342-352. |
13 | 周伟, 田晓, 张亭, 等. 风电叶片玻璃钢复合材料声发射衰减与源定位[J]. 河北大学学报(自然科学版), 2012, 32(1): 100-104. |
ZHOU W, TIAN X, ZHANG T, et al. Acoustic emission attenuation and source location of glass fiber composites for wind turbine blades[J]. Journal of Hebei University (Natural Science Edition), 2012, 32(1): 100-104 (in Chinese). | |
14 | 黄展鸿, 黄春芳, 张鉴炜, 等. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 材料导报, 2018, 32(7): 1122-1128. |
HUANG Z H, HUANG C F, ZHANG J W, et al. Acoustic emission technique for damage detection and failure process determination of fiber-reinforced polymer composites: An application review[J]. Materials Review, 2018, 32(7): 1122-1128 (in Chinese). | |
15 | EATON M J, PULLIN R, HOLFORD K M. Towards improved damage location using acoustic emission[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(9): 2141-2153. |
16 | SARASINI F, SANTULLI C. Non-destructive testing (NDT) of natural fibre composites: Acoustic emission technique[M]∥ Natural Fibre Composites. Amsterdam: Elsevier, 2014: 273-302. |
17 | EHRHART B, VALESKE B, BOCKENHEIMER C. Non-destructive evaluation (NDE) of aerospace composites: Methods for testing adhesively bonded composites[M]∥ Non-Destructive Evaluation (NDE) of Polymer Matrix Composites. Amsterdam: Elsevier, 2013: 220-237. |
18 | MCCRORY J P, AL-JUMAILI S K, CRIVELLI D, et al. Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques[J]. Composites Part B: Engineering, 2015, 68: 424-430. |
19 | ZHOU J R, MATHEWS V J, ADAMS D O. Acoustic emission-based impact location estimation on composite structures[J]. Structural Health Monitoring, 2019, 18(5-6): 1652-1668. |
20 | ZHAO W Z, ZHOU W. Cluster analysis of acoustic emission signals and tensile properties of carbon/glass fiber-reinforced hybrid composites[J]. Structural Health Monitoring, 2019, 18(5-6): 1686-1697. |
21 | DAS A K, LEUNG C K. A new power-based method to determine the first arrival information of an acoustic emission wave[J]. Structural Health Monitoring, 2019, 18(5-6): 1620-1632. |
22 | 孙恒, 马连华, 周伟, 等. 3D打印复合材料拉伸变形的声发射监测[J]. 复合材料科学与工程, 2022(12): 69-74. |
SUN H, MA L H, ZHOU W, et al. Acoustic emission monitoring of tensile deformation of 3D printed composites[J]. Composites Science and Engineering, 2022(12): 69-74 (in Chinese). | |
23 | WANG B, ZHONG S C, LEE T L, et al. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review[J]. Advances in Mechanical Engineering, 2020, 12(4): 168781402091376. |
24 | SAEEDIFAR M, NAJAFABADI M A, ZAROUCHAS D, et al. Barely visible impact damage assessment in laminated composites using acoustic emission[J]. Composites Part B: Engineering, 2018, 152: 180-192. |
25 | SAEEDIFAR M, FOTOUHI M, AHMADI NAJAFABADI M, et al. Prediction of delamination growth in laminated composites using acoustic emission and cohesive zone modeling techniques[J]. Composite Structures, 2015, 124: 120-127. |
26 | DAHMENE F, YAACOUBI S, MOUNTASSIR M EL, et al. On the modal acoustic emission testing of composite structure[J]. Composite Structures, 2016, 140: 446-452. |
27 | MOHAMMADI R, NAJAFABADI M A, SAGHAFI H, et al. The effect of mode II fatigue crack growth rate on the fractographic features of CFRP composite laminates: An acoustic emission and scanning electron microscopy analysis[J]. Engineering Fracture Mechanics, 2021, 241: 107408. |
28 | SAEEDIFAR M, ZAROUCHAS D. Damage characterization of laminated composites using acoustic emission: A review[J]. Composites Part B: Engineering, 2020, 195: 108039. |
29 | NSENGIYUMVA W, ZHONG S C, LIN J W, et al. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review[J]. Composite Structures, 2021, 256: 112951. |
30 | DIOGO A R, MOREIRA B, GOUVEIA C A J, et al. A review of signal processing techniques for ultrasonic guided wave testing[J]. Metals, 2022, 12(6): 936. |
31 | TABRIZI I E, KEFAL A, ZANJANI J S M, et al. Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory[J]. Composite Structures, 2019, 223: 110971. |
32 | XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2021, 255: 112954. |
33 | FRIEDRICH L, COLPO A, MAGGI A, et al. Damage process in glass fiber reinforced polymer specimens using acoustic emission technique with low frequency acquisition[J]. Composite Structures, 2021, 256: 113105. |
34 | KALTEREMIDOU K A, AGGELIS D G, VAN HEMELRIJCK D, et al. On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materials[J]. Mechanics Research Communications, 2021, 111: 103663. |
35 | SAIDANE E H, SCIDA D, ASSARAR M, et al. Damage mechanisms assessment of hybrid flax-glass fibre composites using acoustic emission[J]. Composite Structures, 2017, 174: 1-11. |
36 | HAMDI K, MOREAU G, ABOURA Z. Digital image correlation, acoustic emission and in situ microscopy in order to understand composite compression damage behavior[J]. Composite Structures, 2021, 258: 113424. |
37 | ZHANG Y N, ZHOU B, YU F G, et al. Cluster analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites[J]. Infrared Physics & Technology, 2021, 112: 103581. |
38 | SAEEDIFAR M, AHMADI NAJAFABADI M, YOUSEFI J, et al. Delamination analysis in composite laminates by means of acoustic emission and bi-linear/tri-linear cohesive zone modeling[J]. Composite Structures, 2017, 161: 505-512. |
39 | EATON M, PEARSON M, LEE W, et al. Accurate damage location in complex composite structures and industrial environments using acoustic emission[J]. Journal of Physics: Conference Series, 2015, 628: 012105. |
40 | CARVELLI V, D’ETTORRE A, LOMOV S V. Acoustic emission and damage mode correlation in textile reinforced PPS composites[J]. Composite Structures, 2017, 163: 399-409. |
41 | ROUNDI W, MAHI A EL, GHARAD A EL, et al. Acoustic emission monitoring of damage progression in glass/epoxy composites during static and fatigue tensile tests[J]. Applied Acoustics, 2018, 132: 124-134. |
42 | DWIVEDI S K, VISHWAKARMA M, SONI P A. Advances and researches on non destructive testing: A review[J]. Materials Today: Proceedings, 2018, 5(2): 3690-3698. |
43 | GAO F, HUA J D, ZENG L, et al. Amplitude modified sparse imaging for damage detection in quasi-isotropic composite laminates using non-contact laser induced Lamb waves[J]. Ultrasonics, 2019, 93: 122-129. |
44 | NAKAHATA K, AMANO Y, OGI K, et al. Three-dimensional ultrasonic wave simulation in laminated CFRP using elastic parameters determined from wavefield data[J]. Composites Part B: Engineering, 2019, 176: 107018. |
45 | BLANDFORD B M, JACK D A. High resolution depth and area measurements of low velocity impact damage in carbon fiber laminates via an ultrasonic technique[J]. Composites Part B: Engineering, 2020, 188: 107843. |
46 | DONG J L, KIM B, LOCQUET A, et al. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves[J]. Composites Part B: Engineering, 2015, 79: 667-675. |
47 | MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures, 2015, 134: 845-853. |
48 | KATUNIN A, DRAGAN K, DZIENDZIKOWSKI M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques[J]. Composite Structures, 2015, 127: 1-9. |
49 | IBRAHIM M E, SMITH R A, WANG C H. Ultrasonic detection and sizing of compressed cracks in glass- and carbon-fibre reinforced plastic composites[J]. NDT & E International, 2017, 92: 111-121. |
50 | DZIENDZIKOWSKI M, DRAGAN K, KATUNIN A. Localizing impact damage of composite structures with modified RAPID algorithm and non-circular PZT arrays[J]. Archives of Civil and Mechanical Engineering, 2017, 17(1): 178-187. |
51 | LI Y K, HE C F, LYU Y, et al. Crack detection in monocrystalline silicon solar cells using air-coupled ultrasonic lamb waves[J]. NDT & E International, 2019, 102: 129-136. |
52 | DIENEL C P, MEYER H, WERWER M, et al. Estimation of airframe weight reduction by integration of piezoelectric and guided wave-based structural health monitoring[J]. Structural Health Monitoring, 2019, 18(5-6): 1778-1788. |
53 | WANG R, WU Q, YU F M, et al. Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate[J]. Structural Health Monitoring, 2019, 18(3): 869-881. |
54 | 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. |
YANG H J, YANG Z Y, YANG L, et al. Progress in ultrasonic testing and imaging method for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317 (in Chinese). | |
55 | PAPA I, LOPRESTO V, SIMEOLI G, et al. Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact[J]. Composites Part B: Engineering, 2017, 115: 282-288. |
56 | CAMINERO M A, GARCÍA-MORENO I, RODRÍGUEZ G P, et al. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites[J]. Composites Part B: Engineering, 2019, 165: 131-142. |
57 | RAKOTONARIVO S T, PAYAN C, MOYSAN J, et al. Local damage evaluation of a laminate composite plate using ultrasonic birefringence of shear wave[J]. Composites Part B: Engineering, 2018, 142: 287-292. |
58 | DERUSOVA D A, VAVILOV V P, DRUZHININ N V, et al. Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites[J]. NDT & E International, 2019, 107: 102151. |
59 | SHIN H J, LEE J R. Development of a long-range multi-area scanning ultrasonic propagation imaging system built into a hangar and its application on an actual aircraft[J]. Structural Health Monitoring, 2017, 16(1): 97-111. |
60 | HARIZI W, CHAKI S, BOURSE G, et al. Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps[J]. Composites Part B: Engineering, 2015, 70: 131-137. |
61 | CASTELLANO A, FRADDOSIO A, PICCIONI M D. Ultrasonic goniometric immersion tests for the characterization of fatigue post-LVI damage induced anisotropy superimposed to the constitutive anisotropy of polymer composites[J]. Composites Part B: Engineering, 2017, 116: 122-136. |
62 | BUSTAMANTE L, JEYAPRAKASH N, YANG C H. Hybrid laser and air-coupled ultrasonic defect detection of aluminium and CFRP plates by means of Lamb mode[J]. Results in Physics, 2020, 19: 103438. |
63 | WANG B C, HE P J, KANG Y N, et al. Ultrasonic testing of carbon fiber-reinforced polymer composites[J]. Journal of Sensors, 2022, 2022: 5462237. |
64 | QU Z, JIANG P, ZHANG W X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20(14): 3851. |
65 | 郭德伟, 马其华. CFRP薄壁管红外热成像和CT检测的研究分析[J]. 智能计算机与应用, 2020, 10(3): 294-298. |
GUO D W, MA Q H. Research and analysis of infrared thermography and CT detection of thin-walled CFRP tube[J]. Intelligent Computer and Applications, 2020, 10(3): 294-298 (in Chinese). | |
66 | WANG M L, GAO B, WU T L, et al. Defect depth retrieval method based on nonlinear transformation for pulsed thermographic inspection[J]. International Journal of Thermal Sciences, 2020, 149: 106196. |
67 | WANG Z J, ZHU J Z, TIAN G Y, et al. Comparative analysis of eddy current pulsed thermography and long pulse thermography for damage detection in metals and composites[J]. NDT & E International, 2019, 107: 102155. |
68 | HESLEHURST R B. Defects and damage in composite materials and structures[M]. New York: CRC Press, 2014. |
69 | KATUNIN A, WACHLA D. Analysis of defect detectability in polymeric composites using self-heating based vibrothermography[J]. Composite Structures, 2018, 201: 760-765. |
70 | ISHIKAWA M, ANDO M, KOYAMA M, et al. Active thermographic inspection of carbon fiber reinforced plastic laminates using laser scanning heating[J]. Composite Structures, 2019, 209: 515-522. |
71 | KATUNIN A, WRONKOWICZ-KATUNIN A, WACHLA D. Impact damage assessment in polymer matrix composites using self-heating based vibrothermography[J]. Composite Structures, 2019, 214: 214-226. |
72 | ADDEPALLI S, ZHAO Y F, ROY R, et al. Non-destructive evaluation of localised heat damage occurring in carbon composites using thermography and thermal diffusivity measurement[J]. Measurement, 2019, 131: 706-713. |
73 | HARIZI W, CHAKI S, BOURSE G, et al. Mechanical damage assessment of polymer-matrix composites using active infrared thermography[J]. Composites Part B: Engineering, 2014, 66: 204-209. |
74 | POPOW V, GURKA M. Full factorial analysis of the accuracy of automated quantification of hidden defects in an anisotropic carbon fibre reinforced composite shell using pulse phase thermography[J]. NDT & E International, 2020, 116: 102359. |
75 | BANG H T, PARK S, JEON H. Defect identification in composite materials via thermography and deep learning techniques[J]. Composite Structures, 2020, 246: 112405. |
76 | LUO Q, GAO B, WOO W L, et al. Temporal and spatial deep learning network for infrared thermal defect detection[J]. NDT & E International, 2019, 108: 102164. |
77 | HE Y Z, TIAN G Y, PAN M C, et al. Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109: 1-7. |
78 | XU C H, ZHANG W Y, WU C W, et al. An improved method of eddy current pulsed thermography to detect subsurface defects in glass fiber reinforced polymer composites[J]. Composite Structures, 2020, 242: 112145. |
79 | YI Q, TIAN G Y, MALEKMOHAMMADI H, et al. New features for delamination depth evaluation in carbon fiber reinforced plastic materials using eddy current pulse-compression thermography[J]. NDT & E International, 2019, 102: 264-273. |
80 | MONTINARO N, CERNIGLIA D, PITARRESI G. Detection and characterisation of disbonds on Fibre metal laminate hybrid composites by flying laser spot thermography[J]. Composites Part B: Engineering, 2017, 108: 164-173. |
81 | WEI J C, WANG F, LIU J Y, et al. A laser arrays scan thermography (LAsST) for the rapid inspection of CFRP composite with subsurface defects[J]. Composite Structures, 2019, 226: 111201. |
82 | MORAN J, RAJIC N. Remote line scan thermography for the rapid inspection of composite impact damage[J]. Composite Structures, 2019, 208: 442-453. |
83 | WRONKOWICZ A, KATUNIN A, WACHLA D. Enhancement of damage identification in composite structures with self-heating based vibrothermography[J]. Optik, 2019, 181: 545-554. |
84 | LAHUERTA F, NIJSSEN R P L, VAN DER MEER F P, et al. Experimental-computational study towards heat generation in thick laminates under fatigue loading[J]. International Journal of Fatigue, 2015, 80: 121-127. |
85 | RENSHAW J, CHEN J C, HOLLAND S D, et al. The sources of heat generation in vibrothermography[J]. NDT & E International, 2011, 44(8): 736-739. |
86 | 郑凯, 罗志涛, 张辉. 红外热成像技术在FRP复合材料/热障涂层无损检测应用中的研究现状与进展[J]. 红外技术, 2023, 45(10): 1008-1019. |
ZHENG K, LUO Z T, ZHANG H. Research status of infrared thermography in NDT of FRP composites/thermal barrier coatings and its development[J]. Infrared Technology, 2023, 45(10): 1008-1019 (in Chinese). | |
87 | GHOLIZADEH S. A review of non-destructive testing methods of composite materials[J]. Procedia Structural Integrity, 2016, 1: 50-57. |
88 | HUNG Y Y. Digital shearography versus TV-holography for non-destructive evaluation[J]. Optics and Lasers in Engineering, 1997, 26(4-5): 421-436. |
89 | HUNG Y Y, HO H P. Shearography: An optical measurement technique and applications[J]. Materials Science and Engineering: Reports, 2005, 49(3): 61-87. |
90 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 无损检测 复合材料激光错位散斑检测方法: [S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Non-destructive testing—Test method for laser shearography of composite materials: [S]. Beijing: Standards Press of China, 2017 (in Chinese). | |
91 | HUNG Y Y, CHEN Y S, NG S P, et al. Review and comparison of shearography and active thermography for nondestructive evaluation[J]. Materials Science and Engineering: Reports, 2009, 64(5-6): 73-112. |
92 | DE ANGELIS G, MEO M, ALMOND D P, et al. A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization[J]. NDT & E International, 2012, 45(1): 91-96. |
93 | KIM G, HONG S, JHANG K Y, et al. NDE of low-velocity impact damages in composite laminates using ESPI, digital shearography and ultrasound C-scan techniques[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 869-876. |
94 | KADLEC M, RŮŽEK R. A comparison of laser shearography and C-scan for assessing a glass/epoxy laminate impact damage[J]. Applied Composite Materials, 2012, 19(3): 393-407. |
95 | ZHAO Q H, DAN X Z, SUN F Y, et al. Digital shearography for NDT: Phase measurement technique and recent developments[J]. Applied Sciences, 2018, 8(12): 2662. |
96 | SUN F Y, DAN X Z, YAN P Z, et al. A spatial-phase-shift-based defect detection shearography system with independent adjustment of shear amount and spatial carrier frequency[J]. Optics & Laser Technology, 2020, 124: 105956. |
97 | KATUNIN A, LOPES H, ARAÚJO DOS SANTOS J V. Identification of multiple damage using modal rotation obtained with shearography and undecimated wavelet transform[J]. Mechanical Systems and Signal Processing, 2019, 116: 725-740. |
98 | NEWMAN J W. Shearography nondestructive testing of composites[M]∥ Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018: 270-290. |
99 | PAN B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals[J]. Measurement Science and Technology, 2018, 29(8): 082001. |
100 | ORELL O, VUORINEN J, JOKINEN J, et al. Characterization of elastic constants of anisotropic composites in compression using digital image correlation[J]. Composite Structures, 2018, 185: 176-185. |
101 | SUTTON M, WOLTERS W, PETERS W, et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1983, 1(3): 133-139. |
102 | HOLMES J, SOMMACAL S, DAS R, et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review[J]. Composite Structures, 2023, 315: 116994. |
103 | 李十泉, 刘荣桂, 朱奇, 等. 基于数字图像相关光测法的CFRP测试与分析[J]. 江苏大学学报(自然科学版), 2023, 44(1): 112-116, 124. |
LI S Q, LIU R G, ZHU Q, et al. Determination and analysis of CFRP based on digital image correlation photometry[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(1): 112-116, 124 (in Chinese). | |
104 | REU P L, TOUSSAINT E, JONES E, et al. DIC challenge: Developing images and guidelines for evaluating accuracy and resolution of 2D analyses[J]. Experimental Mechanics, 2018, 58(7): 1067-1099. |
105 | SUTTON M A, YAN J H, TIWARI V, et al. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements[J]. Optics and Lasers in Engineering, 2008, 46(10): 746-757. |
106 | HEIM F M, CROOM B P, BUMGARDNER C, et al. Scalable measurements of tow architecture variability in braided ceramic composite tubes[J]. Journal of the American Ceramic Society, 2018, 101(9): 4297-4307. |
107 | CHEN B, PAN B. Mirror-assisted multi-view digital image correlation: Principles, applications and implementations[J]. Optics and Lasers in Engineering, 2022, 149: 106786. |
108 | MCGINNIS M J, PESSIKI S, TURKER H. Application of three-dimensional digital image correlation to the core-drilling method[J]. Experimental Mechanics, 2005, 45(4): 359-367. |
109 | HOHMANN BP, BRUCK P, ESSELMAN TC, et al. Digital image correlation (DIC): An advanced nondestructive testing method for life extension of nuclear power plants[EB/OL]. (2012-08-26) [2023-05-14]. . |
110 | SCHMIDT T, TYSON J, GALANULIS K. Pull-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part 1[J]. Experimental Techniques, 2003, 27(3): 47-50. |
111 | LEE S, JO E, JI W. Digital volume correlation technique for characterizing subsurface deformation behavior of a laminated composite[J]. Composites Part B: Engineering, 2020, 194: 108052. |
112 | MONTESANO J, SELEZNEVA M, LEVESQUE M, et al. Modeling fatigue damage evolution in polymer matrix composite structures and validation using in situ digital image correlation[J]. Composite Structures, 2015, 125: 354-361. |
113 | GONG W R, CHEN J L, PATTERSON E A. An experimental study of the behaviour of delaminations in composite panels subjected to bending[J]. Composite Structures, 2015, 123: 9-18. |
114 | AZADI M, SAEEDI M, MOKHTARISHIRAZABAD M, et al. Effects of loading rate on crack growth behavior in carbon fiber reinforced polymer composites using digital image correlation technique[J]. Composites Part B: Engineering, 2019, 175: 107161. |
115 | MISKDJIAN I, HAJIKAZEMI M, VAN PAEPEGEM W. Automatic edge detection of ply cracks in glass fiber composite laminates under quasi-static and fatigue loading using multi-scale digital image correlation[J]. Composites Science and Technology, 2020, 200: 108401. |
116 | PANNIER Y, FOTI F, GIGLIOTTI M. High temperature fatigue of carbon/polyimide 8-harness satin woven composites. Part I: Digital image correlation and micro-computed tomography damage characterization[J]. Composite Structures, 2020, 244: 112255. |
117 | ZHU M, GORBATIKH L, FONTEYN S, et al. Digital image correlation assisted characterization of Mode I fatigue delamination in composites[J]. Composite Structures, 2020, 253: 112746. |
118 | 肖志斌, 武丽丽, 裘雄伟, 等. 数字图像相关法在复合材料研究中的应用进展[J]. 理化检验(物理分册), 2021, 57(5): 39-45, 49. |
XIAO Z B, WU L L, QIU X W, et al. Application progress of digital image correlation in composite materials research[J]. Physical Testing and Chemical Analysis (Part A (Physical Testing)), 2021, 57(5): 39-45, 49 (in Chinese). | |
119 | HE Y Z, TIAN G Y, PAN M C, et al. Non-destructive testing of low-energy impact in CFRP laminates and interior defects in honeycomb sandwich using scanning pulsed eddy current[J]. Composites Part B: Engineering, 2014, 59: 196-203. |
120 | MIZUKAMI K, MIZUTANI Y, TODOROKI A, et al. Design of eddy current-based dielectric constant meter for defect detection in glass fiber reinforced plastics[J]. NDT & E International, 2015, 74: 24-32. |
121 | GUPTA R, MITCHELL D, BLANCHE J, et al. A review of sensing technologies for non-destructive evaluation of structural composite materials[J]. Journal of Composites Science, 2021, 5(12): 319. |
122 | 徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39(10): 5008-5019. |
XU X J, LUO J, CHEN Z Q, et al. Diffusion and attenuation of electromagnetic field in carbon fiber reinforced polymer structures considering interlaminar interface conductive behavior and resistive loss[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5008-5019 (in Chinese). | |
123 | ORAL I. Characterization of damages in materials by computer-aided tap testing[J]. IOP Conference Series: Materials Science and Engineering, 2019, 707(1): 012019. |
124 | MACHADO M A, ANTIN K N, ROSADO L S, et al. Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer[J]. Composites Part B: Engineering, 2019, 168: 226-235. |
125 | ZENG Z W, TIAN Q Z, WANG H D, et al. Testing of delamination in multidirectional carbon fiber reinforced polymer laminates using the vertical eddy current method[J]. Composite Structures, 2019, 208: 314-321. |
126 | PASADAS D J, RAMOS H G, BASKARAN P, et al. ECT in composite materials using double excitation coils and resonant excitation/sensing circuits[J]. Measurement, 2020, 161: 107859. |
127 | TIAN G Y, SOPHIAN A. Reduction of lift-off effects for pulsed eddy current NDT[J]. NDT & E International, 2005, 38(4): 319-324. |
128 | DONG J L, POMARÈDE P, CHEHAMI L, et al. Visualization of subsurface damage in woven carbon fiber-reinforced composites using polarization-sensitive terahertz imaging[J]. NDT & E International, 2018, 99: 72-79. |
129 | 王强, 赵博研, 刘秋寒, 等. 曲面结构石英纤维增强树脂复合材料分层损伤缺陷太赫兹智能检测[J]. 复合材料学报, 2023, 40(3): 1785-1796. |
WANG Q, ZHAO B Y, LIU Q H, et al. Intelligent detection of delamination defect in curved structural quartz fiber reinforced polymer composites using terahertz technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1785-1796 (in Chinese). | |
130 | TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1: 97-105. |
131 | SIRTORI C. Bridge for the terahertz gap[J]. Nature, 2002, 417: 132-133. |
132 | AUSTON D H, CHEUNG K P, VALDMANIS J A, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 1984, 53(16): 1555-1558. |
133 | DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2017, 50(4): 043001. |
134 | DOBROIU A, OTANI C, KAWASE K. Terahertz-wave sources and imaging applications[J]. Measurement Science and Technology, 2006, 17(11): R161-R174. |
135 | GUILLET J P, RECUR B, FREDERIQUE L, et al. Review of terahertz tomography techniques[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(4): 382-411. |
136 | IBRAHIM M E. Nondestructive evaluation of thick-section composites and sandwich structures: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 36-48. |
137 | RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures, 2016, 156: 338-347. |
138 | WANG Q, LI X Y, CHANG T Y, et al. Nondestructive imaging of hidden defects in aircraft sandwich composites using terahertz time-domain spectroscopy[J]. Infrared Physics & Technology, 2019, 97: 326-340. |
139 | WANG J, ZHANG J, CHANG T Y, et al. Terahertz nondestructive imaging for foreign object detection in glass fibre-reinforced polymer composite panels[J]. Infrared Physics & Technology, 2019, 98: 36-44. |
140 | DONG J L, LOCQUET A, CITRIN D S. Polarization-resolved terahertz imaging of hybrid fiber-reinforced composite laminate subject to low-velocity impact[C]∥ Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2016: SM1L.8. |
141 | ZHANG D D, REN J J, GU J, et al. Nondestructive testing of bonding defects in multilayered ceramic matrix composites using THz time domain spectroscopy and imaging[J]. Composite Structures, 2020, 251: 112624. |
142 | YANG R Z, HE Y Z, ZHANG H. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1225-1250. |
143 | TODOROKI A, YAMADA K, MIZUTANI Y, et al. Impact damage detection of a carbon-fibre-reinforced-polymer plate employing self-sensing time-domain reflectometry[J]. Composite Structures, 2015, 130: 174-179. |
144 | 回沛林, 李勇, 王若男, 等. GFRP材料损失缺陷的微波反射定量检测[J]. 传感器与微系统, 2021, 40(7): 110-113. |
HUI P L, LI Y, WANG R N, et al. Quantitative determination of loss defect of GFRP material by microwave reflectometry[J]. Transducer and Microsystem Technologies, 2021, 40(7): 110-113 (in Chinese). | |
145 | ALBISHI A M, BOYBAY M S, RAMAHI O M. Complementary split-ring resonator for crack detection in metallic surfaces[J]. IEEE Microwave and Wireless Components Letters, 2012, 22(6): 330-332. |
146 | TRAKIC A, WANG Y F, FOSTER D, et al. Microwave split-ring resonator array for imaging of near-surface material defects[C]∥ 2018 Australian Microwave Symposium (AMS). Piscataway: IEEE Press, 2018: 47-48. |
147 | 杨玉娥, 闫天婷, 任保胜. 复合材料中碳纤维方向和弯曲缺陷的微波检测[J]. 航空材料学报, 2015, 35(6): 91-96. |
YANG Y E, YAN T T, REN B S. Microwave evaluation of direction and bending defect of carbon fiber in composite material[J]. Journal of Aeronautical Materials, 2015, 35(6): 91-96 (in Chinese). | |
148 | TONGA D A, AKBAR M F, SHRIFAN N H M M, et al. Nondestructive evaluation of fiber-reinforced polymer using microwave techniques: A review[J]. Coatings, 2023, 13(3): 590. |
149 | 王化祥. 电学层析成像技术[J]. 自动化仪表, 2017, 38(5): 1-6. |
WANG H X. Electrical tomography technology[J]. Process Automation Instrumentation, 2017, 38(5): 1-6 (in Chinese). | |
150 | ZHANG B X, ZHANG L F, WANG Z, et al. Image reconstruction of planar electrical capacitance tomography based on DBSCAN and self-adaptive ADMM algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 1809, 72: 4504711. |
151 | FAN W R, WANG C. Damage detection for CFRP based on planar electrical capacitance tomography[J]. Structural Durability & Health Monitoring, 2020, 14(4): 339-353. |
152 | CAGÁŇ J, MICHALCOVÁ L. Impact damage detection in CFRP composite via electrical resistance tomography by means of statistical processing[J]. Journal of Nondestructive Evaluation, 2020, 39(2): 38. |
153 | THOMAS A J, KIM J J, TALLMAN T N, et al. Damage detection in self-sensing composite tubes via electrical impedance tomography[J]. Composites Part B: Engineering, 2019, 177: 107276. |
154 | LIU Z, XU Y, ZHANG X F, et al. Simulation study on the characteristics of carbon-fiber-reinforced plastics in electromagnetic tomography nondestructive evaluation systems[C]∥ 2010 International Conference on Measuring Technology and Mechatronics Automation. Piscataway: IEEE Press, 2010: 382-385. |
155 | ZHANG R H, FANG H Y, ZHANG Q, et al. In situ damage monitoring of CFRPs by electromagnetic tomography with the compatible multitemplate supervised descent method[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 72: 4501912. |
156 | 曲抒旋, 巩文斌, 孙小珠, 等. 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022, 43(1): 424949. |
QU S X, GONG W B, SUN X Z, et al. On-line damage monitoring of composites based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 424949 (in Chinese). | |
157 | TAN K T, WATANABE N, IWAHORI Y. X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading[J]. Composites Part B: Engineering, 2011, 42(4): 874-884. |
158 | AWAJA F, NGUYEN M T, ZHANG S N, et al. The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro CT[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(4): 408-418. |
159 | 吕中宾, 田忠建, 刘光辉, 等. 直线扫描CT检测碳纤维复合芯导线缺陷研究[J]. 重庆大学学报, 2021, 44(5): 95-103. |
LYU Z B, TIAN Z J, LIU G H, et al. Inspecting defects of ACCC by linear scanning CT[J]. Journal of Chongqing University, 2021, 44(5): 95-103 (in Chinese). | |
160 | CHAI Y, WANG Y, YOUSAF Z, et al. Damage evolution in braided composite tubes under torsion studied by in situ X-ray computed tomography[J]. Composites Science and Technology, 2020, 188: 107976. |
161 | SENCK S, SCHEERER M, REVOL V, et al. Microcrack characterization in loaded CFRP laminates using quantitative two- and three-dimensional X-ray dark-field imaging[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 206-214. |
162 | HANNESSCHLÄGER C, REVOL V, PLANK B, et al. Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography[J]. Case Studies in Nondestructive Testing and Evaluation, 2015, 3: 34-41. |
163 | LU T Y, CHEN X H, WANG H, et al. Comparison of low-velocity impact damage in thermoplastic and thermoset composites by non-destructive three-dimensional X-ray microscope[J]. Polymer Testing, 2020, 91: 106730. |
164 | CHEN Z H, JUANG J C. AE-RTISNet: Aeronautics engine radiographic testing inspection system net with an improved fast region-based convolutional neural network framework[J]. Applied Sciences, 2020, 10(23): 8718. |
165 | PRADE F, SCHAFF F, SENCK S, et al. Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography[J]. NDT & E International, 2017, 86: 65-72. |
166 | GARCEA S C, WANG Y, WITHERS P J. X-ray computed tomography of polymer composites[J]. Composites Science and Technology, 2018, 156: 305-319. |
167 | IBRAHIM M E. Nondestructive testing and structural health monitoring of marine composite structures[M]∥ Marine Applications of Advanced Fibre-Reinforced Composites. Amsterdam: Elsevier, 2016: 147-183. |
168 | PRAKASH R. Non-destructive testing of composites[J]. Composites, 1980, 11(4): 217-224. |
169 | DU B L, YANG R Z, HE Y Z, et al. Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 1117-1151. |
170 | WIND Y, SAATY T L. Marketing applications of the analytic hierarchy process[J]. Management Science, 1980, 26(7): 641-658. |
171 | VAHIDNIAA M H, ALESHEIKHB A, ALIMOHAMMA DIC A, et al. Fuzzy analytical hierarchy process in GIS application[EB/OL]. (2008-09-06) [2023-08-21]. . |
172 | TOWSYFYAN H, BIGURI A, BOARDMAN R, et al. Successes and challenges in non-destructive testing of aircraft composite structures[J]. Chinese Journal of Aeronautics, 2020, 33(3): 771-791. |
173 | SHOUKROUN D, MASSIMI L, IACOVIELLO F, et al. Enhanced composite plate impact damage detection and characterisation using X-ray refraction and scattering contrast combined with ultrasonic imaging[J]. Composites Part B: Engineering, 2020, 181: 107579. |
174 | DE OLIVEIRA B C F, NIENHEYSEN P, BALDO C R, et al. Improved impact damage characterisation in CFRP samples using the fusion of optical lock-in thermography and optical square-pulse shearography images[J]. NDT & E International, 2020, 111: 102215. |
175 | DJABALI A, TOUBAL L, ZITOUNE R, et al. Fatigue damage evolution in thick composite laminates: Combination of X-ray tomography, acoustic emission and digital image correlation[J]. Composites Science and Technology, 2019, 183: 107815. |
176 | HO M, EL-BORGI S, PATIL D, et al. Inspection and monitoring systems subsea pipelines: A review paper[J]. Structural Health Monitoring, 2020, 19(2): 606-645. |
177 | DEANE S, AVDELIDIS N P, IBARRA-CASTANEDO C, et al. Application of NDT thermographic imaging of aerospace structures[J]. Infrared Physics & Technology, 2019, 97: 456-466. |
[1] | 李耀华, 巩子瑜. 基于改进FRAM的民机系统安全性分析[J]. 航空学报, 2020, 41(12): 324083-324083. |
[2] | 张宇, 闫云聚, 余龙, 王建强. 阵列宽带Lamb波在结构损伤检测中的应用[J]. 航空学报, 2014, 35(3): 780-787. |
[3] | 吴耀军;陶宝祺. 基于小波神经网络的复合材料损伤检测[J]. 航空学报, 1997, 18(2): 252-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学