1 |
原崇新, 李妍, 潘杰, 等. 自动铺丝过程中的典型缺陷及原因分析[J]. 航空制造技术, 2019, 62(4): 66-74.
|
|
YUAN C X, LI Y, PAN J, et al. Typical defects and causes analysis of automated fiber placement[J]. Aeronautical Manufacturing Technology, 2019, 62(4): 66-74 (in Chinese).
|
2 |
张小辉, 朱玉祥, 张少秋, 等. 先进复合材料自动铺丝技术研究进展[J]. 航空制造技术, 2018, 61(7): 54-61.
|
|
ZHANG X H, ZHU Y X, ZHANG S Q, et al. Research progress on automated fiber placement technology[J]. Aeronautical Manufacturing Technology, 2018, 61(7): 54-61 (in Chinese).
|
3 |
WANIGASEKARA C, OROMIEHIE E, SWAIN A, et al. Machine learning based predictive model for AFP-based unidirectional composite laminates[J]. IEEE Transactions on Industrial Informatics, 2020,16(4): 2315-2324.
|
4 |
SMITH R, QURESHI Z, SCAIFE R, et al. Limitations of processing carbon fibre reinforced plastic/polymer material using automated fibre placement technology[J]. Reinforced Plastics & Composites, 2016, 35(21): 1527-1542.
|
5 |
HEINECKE F, WILLBERG C. Manufacturing-induced imperfections in composite parts manufactured via automated fiber placement[J]. Composites Science, 2019, 3(2): 56-56.
|
6 |
丁希仑, 罗伟恒, 刘斐, 等. 自动铺丝成型构件缺陷在线检测技术进展[J]. 北京航空航天大学学报, 2022, 48(9): 1721-1733.
|
|
DING X L, LUO W H, LIU F, et al. Review on automated fiber placement induced defects and their online monitoring technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1721-1733 (in Chinese).
|
7 |
倪金辉. 基于机器视觉的预浸纱缺陷检测系统的研究[D]. 南京: 南京航空航天大学, 2015.
|
|
NI J H, Defect detection system for prepreg based on machine vision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
|
8 |
康硕, 柯臻铮, 王璇, 等. 基于红外和可见光图像融合的铺丝缺陷检测方法[J]. 航空学报, 2022, 43(3): 425187.
|
|
KANG S, KE Z Z, WANG X, et al. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 425187 (in Chinese).
|
9 |
蔡志强, 肖军, 文立伟, 等. 基于预浸纱自动铺放缺陷的分割算法[J]. 航空材料学报, 2017, 37(2): 21-27.
|
|
CAI Z Q, XIAO J, WEN L W, et al. Algorithm of defect segmentation for AFP based on prepregs[J]. Journal of Aeronautical Materials, 2017, 37(2): 21-27 (in Chinese).
|
10 |
吕昊远, 俞璐, 周星宇, 等. 半监督深度学习图像分类方法研究综述[J]. 计算机科学与探索, 2021, 15(6): 1038-1048.
|
|
LV H Y, YU L, ZHOU X Y, et al. Review of semi-supervised deep learning image classification methods[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(6): 1038-1048 (in Chinese).
|
11 |
赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219.
|
|
ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219 (in Chinese).
|
12 |
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12): 1640-1663.
|
|
TANG B, KONG J Y, WU S Q. Review of surface defect detection based on machine vision[J]. Journal of Image and Graphics, 2017, 22(12): 1640-1663 (in Chinese).
|
13 |
SHAHAM R T, DEKEL T, MICHAELI T. SinGAN: learning a generative model from a single natural image [C]∥Proceedings of the IEEE International Conference on Computer Vision. 2019: 4570-4580.
|
14 |
刘剑超, 相洁, 张玲, 等. 一种自约束的小样本缺损图像分割方法[J]. 小型微型计算机系统, 2022, 43(8): 1732-1738.
|
|
LIU J C, XIANG J, ZHANG L, et al. Level-set rectified U-net for few-shot fouling image segmentation[J]. Journal of Chinese Mini-Micro Computer Systems, 2022, 43(8): 1732-1738 (in Chinese).
|
15 |
王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.
|
|
WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332 (in Chinese).
|
16 |
HINZ T, FISHER M, WANG O, et al. Improved techniques for training single-image GANs[C]∥2021 IEEE Winter Conference on Applications of Computer Vision. 2021: 1299-1308.
|
17 |
刘伟韬. 基于SinGAN的图像生成模型[J]. 曲阜师范大学学报(自然科学版), 2020, 46(2): 67-71.
|
|
LIU W T. Image generative model based on single generative adversarial network[J]. Journal of Qufu Normal University (Natural Science Edition), 2020, 46(2): 67-71 (in Chinese).
|
18 |
程国建, 张福临. 基于SinGAN的岩石薄片图像超分辨率重建[J]. 西安石油大学学报(自然科学版), 2021, 36(2): 116-121.
|
|
CHENG G J, ZHANG F L. Super-resolution reconstruction of rock slice image based on SinGAN[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2021, 36(2): 116-121 (in Chinese).
|
19 |
SONGWEI G, RUI Z, HONGXIA L, et al. Improved SinGAN integrated with an attentional mechanism for remote sensing image classification[J]. Remote Sensing, 2021, 13(9): 1713.
|
20 |
王星, 高峰, 陈吉, 等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报, 2021, 46(9): 3066-3078.
|
|
WANG X, GAO F, CHEN J, et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society, 2021, 46(9): 3066-3078 (in Chinese).
|
21 |
尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489.
|
|
YIN H P, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: A review[J]. Acta Automatica Sinica, 2016, 42(10): 1466-1489 (in Chinese).
|
22 |
王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
|
|
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312 (in Chinese).
|
23 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13708-13717.
|
24 |
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
|
|
REN H, WANG X G. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6 (in Chinese).
|
25 |
赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究[J]. 图学学报, 2022, 43(5): 776-782.
|
|
ZHAO L L, WANG X Y, ZHANG Y, et al. Vehicle target detection based on YOLOv5s fusion SENet[J]. Journal of Graphics, 2022, 43(5): 776-782 (in Chinese).
|
26 |
陈志军, 胡军楠, 冷姚, 等. 基于轻量化网络和注意力机制的智能车快速目标识别方法[J]. 交通运输系统工程与信息, 2022, 22(6): 105-113.
|
|
CHEN Z J, HU J N, LENG Y, et al. Intelligent vehicle target fast recognition based on lightweight network and attention mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 105-113 (in Chinese).
|
27 |
于海洋, 景鹏, 张文涛, 等. 基于残差与注意力机制的道路裂缝检测U-Net改进模型[J]. 计算机工程, 2023, 49(6): 265-273.
|
|
YU H Y, JING P, ZHANG W T, et al. Improved U-Net model for road crack detection based on residual and attention mechanism[J]. Computer Engineering, 2023, 49(6): 265-273 (in Chinese).
|
28 |
佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006(12): 1758-1763.
|
|
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006(12): 1758-1763 (in Chinese).
|
29 |
高瑶, 肖卫国, 王力, 等. 关于红外图像目标检测评价仿真研究[J]. 计算机仿真, 2016, 33(11): 33-36, 52.
|
|
GAO Y, XIAO W G, WANG L, et al. Study on simulation and evaluation of infrared image target detection[J]. Computer Integrated Manufacturing Systems, 2016, 33(11): 33-36, 52 (in Chinese).
|
30 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
31 |
BERG A C, FU C Y, SZEGEDY C, et al. SSD: Single Shot MultiBox Detector [DB/OL]. arXiv:.
|
32 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]∥Conference on Computer Vision and Pattern Recognition. 2018: 1-6
|
33 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection [DB/OL]. arXiv:.
|