1 |
白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443.
|
|
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese).
|
2 |
AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682.
|
3 |
PHOENIX A A, MAXWELL J R, ROGERS R E. Mach 5-3.5 morphing waverider accuracy and aerodynamic performance evaluation[J]. Journal of Aircraft, 2019, 56(5): 2047-2061.
|
4 |
彭悟宇, 杨涛, 涂建秋, 等. 高超声速变形飞行器翼面变形模式分析[J]. 国防科技大学学报, 2018, 40(3): 15-21.
|
|
PENG W Y, YANG T, TU J Q, et al. Analysis on wing deformation modes of hypersonic morphing aircraft[J]. Journal of National University of Defense Technology, 2018, 40(3): 15-21 (in Chinese).
|
5 |
阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490.
|
|
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese).
|
6 |
张斌. 基于自由变形和代理优化的飞行器气动外形优化设计研究[D]. 长沙: 国防科技大学, 2019.
|
|
ZHANG B. Research on aerodynamic shape optimization design of vehicle based on free form deformation and surrogate-based optimization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
|
7 |
DREYER E R, GRIER B J, MCNAMARA J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft, 2021, 58(3): 663-676.
|
8 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
9 |
LAM R, ALLAIRE D L, WILLCOX K E. Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources[C]∥ 56 th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 0143.
|
10 |
XIAO M Y, ZHANG G H, BREITKOPF P, et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation, 2018, 323: 120-131.
|
11 |
CHENG M, JIANG P, HU J X, et al. A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3797-3818.
|
12 |
ZHANG T T, WANG Z G, HUANG W, et al. Parameterization and optimization of hypersonic-gliding vehicle configurations during conceptual design[J]. Aerospace Science and Technology, 2016, 58: 225-234.
|
13 |
李铭琦. 基于热流固多场耦合分析的剪切式滑动蒙皮变后掠翼设计与优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
LI M Q. Design and optimization of a shear sliding skin variable sweep wing based on thermal-fluid-solid multi-field coupling analysis[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
|
14 |
MAIER W T, NEEDELS J T, GARBACZ C, et al. SU2-NEMO: An open-source framework for high-Mach nonequilibrium multi-species flows[J]. Aerospace, 2021, 8(7): 193.
|
15 |
SATA 999. PyPanair [EB/OL]. (2017-04-20)[2022-10-28]. .
|
16 |
GENTRY A E, SMYTH D, OLIVER W. The Mark IV supersonic-hypersonic arbitrary-body program. volume II. program formulation[R]. 1973
|
17 |
李正洲, 贺元元, 高昌, 等. 有翼再入飞行器气动外形集成设计优化[J]. 航空学报, 2020, 41(5): 623356.
|
|
LI Z Z, HE Y Y, GAO C, et al. Optimization of aeroshape integrated design of winged re-entry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623356 (in Chinese).
|
18 |
PARK S H, NEEB D, PLYUSHCHEV G, et al. A study on heat flux predictions for re-entry flight analysis[J]. Acta Astronautica, 2021, 187: 271-280.
|
19 |
ZHAO M. Prediction and validation technologies of aerodynamic force and heat for hypersonic vehicle design[M]. Singapore: Springer, 2021.
|
20 |
周宇航. 考虑防热层的高速火箭弹气动热计算[D]. 南京: 南京理工大学, 2017.
|
|
ZHOU Y H. Aerodynamic heat calculation of high-speed rocket with heat protection layer[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese).
|
21 |
叶年辉, 龙腾, 武宇飞, 等. 基于Kriging代理模型的约束差分进化算法[J]. 航空学报, 2021, 42(6): 324580.
|
|
YE N H, LONG T, WU Y F, et al. Kriging-assisted constrained differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324580 (in Chinese).
|
22 |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
|
|
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese).
|
23 |
DASH S, MANDAL B N, PARSAD R. On the construction of nested orthogonal Latin hypercube designs[J]. Metrika, 2020, 83(3): 347-353.
|
24 |
TOAL D J J. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1223-1245.
|
25 |
李昊歌, 杨华, 杨雨欣, 等. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137.
|
|
Refinement optimization design for heat reduction on windward surface of hypersonic lifting body[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(S2): 124-137 (in Chinese).
|
26 |
冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449.
|
|
RAN M P, WANG C C, LIU H H, et al. Development status and prospect of control technology for variant aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese).
|