收稿日期:
2022-05-27
修回日期:
2022-07-04
接受日期:
2022-08-17
出版日期:
2023-05-25
发布日期:
2022-08-31
通讯作者:
毕文豪
E-mail:biwenhao@nwpu.edu.cn
基金资助:
Wenhao BI1(), Qiucen FAN1, Delin LI2, An ZHANG1
Received:
2022-05-27
Revised:
2022-07-04
Accepted:
2022-08-17
Online:
2023-05-25
Published:
2022-08-31
Contact:
Wenhao BI
E-mail:biwenhao@nwpu.edu.cn
Supported by:
摘要:
针对民机正向设计中存在的建模对象复杂耦合程度高、建模理论支撑不足、利益相关方需求缺乏模型描述等问题,提出了基于多视角的民机正向设计建模方法。首先,通过分析民机正向设计流程和基于模型的系统工程(MBSE)方法论,明确民机正向设计自顶向下的映射和关联关系;然后,引入多视角对民机设计流程进行多方位解耦与描述,分析各视角下的建模元素及其逻辑关系,将设计领域知识流与各视角下建模流程相结合,通过建模语言SysML对多个视角下的民机正向设计模型进行抽象建模描述;最后,通过舱压控制系统建模实例验证了本方法能够有效契合民用飞机系统的设计。
中图分类号:
毕文豪, 范秋岑, 李德林, 张安. 基于多视角的民机正向设计建模方法[J]. 航空学报, 2023, 44(10): 227536-227536.
Wenhao BI, Qiucen FAN, Delin LI, An ZHANG. Modeling approach for forward design of civil aircraft based on multiple perspectives[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227536-227536.
表 1
MBSE方法论对比
MBSE方法论 | 方法论架构特点 | 语言 |
---|---|---|
IBM Rational Telelogic Harmony-SE | Harmony-SE是近十年较为成熟的MBSE方法论,包括需求分析、系统功能分析和系统设计综合等3个阶段。方法论通过凝练的语言对各阶段提供了相对严格的开发指导 | SysML |
Arcadia | Arcadia方法论中,系统建模被分解为运行分析、系统分析、逻辑分析、物理分析和终端产品结构分解等5个阶段,其使用的DSML(Domain Specific Modeling Language)是对SysML(Systems Modeling Language)的扩展和定制,能够更好地适应Arcadia方法论面向的航天、轨道交通和航天等领域内的设计 | DSML |
MagicGrid | MagicGrid方法论提供了一种可视化的、层次结构分明的MBSE方法论流程,能够实现从抽象概念(黑盒)、问题描述(灰盒)、解决方案(白盒)3个层次的层次化分析,并基于需求驱动,从行为、结构、参数等3个视角开展系统设计 | SysML |
OOSEM | OOSEM将系统开发活动嵌入在系统的层次化结构中,在工程设计人员进行场景分析、功能分析等一系列工程活动时,以递归迭代的形式确保各系统视图的一致性 | SysML |
Vitech MBSE Methodology | 需求分析、系统设计等不同阶段的工程设计人员都基于系统定义语言(System Define Language,SDL)进行技术沟通和数据交流,这种结构化的建模语言可以生成图表供数据一致性检查 | SDL |
RUP-SE | RUP-SE方法论的核心是架构设计,以风险和用例为驱动,采用迭代式的开发方法进行开展 | UML |
SA | SA方法论架构以目标为最终设计导向,以时间层面的状态变量为约束,对工程设计人员的知识储备要求较高,难以进行推广使用 | SQL |
Dori OPM | 对象过程方法OPM结合了对象过程图(Object-Process Diagram, OPD)和对象过程语言(Object-Process Language, OPL)来实现在单个集成模型中系统功能、结构和行为的可视化或模型语言化 | OPD/OPL |
1 | 陈泳, 田彬, 刘泽林, 等. 民机研制系统工程若干基本概念的哲学思考[J]. 民用飞机设计与研究, 2017(3): 35-41. |
CHEN Y, TIAN B, LIU Z L, et al. The basic concepts of the systems engineering approaches for civil aircraft development[J]. Civil Aircraft Design & Research, 2017(3): 35-41 (in Chinese). | |
2 | 郭博智, 李浩敏. 大型客机设计中的需求管理[J]. 民用飞机设计与研究, 2013(4): 1-5. |
GUO B Z, LI H M. The application of requirements management in civil aircraft development[J]. Civil Aircraft Design & Research, 2013(4): 1-5 (in Chinese). | |
3 | 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 523436. |
HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523436 (in Chinese). | |
4 | 马小骏, 彭焕春. 系统工程在大型客机运行支持系统研制中的应用综述[J]. 航空学报, 2019, 40(1): 522376. |
MA X J, PENG H C. Review on development of commercial aircraft operation support system based on system engineering approach[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522376 (in Chinese). | |
5 | MONTGOMERY P R. Model-based system integration (MBSI)—Key attributes of MBSE from the system integrator’s perspective[J]. Procedia Computer Science, 2013, 16: 313-322. |
6 | BJORKMAN E A, SARKANI S, MAZZUCHI T A. Using model-based systems engineering as a framework for improving test and evaluation activities[J]. Systems Engineering, 2013, 16(3): 346-362. |
7 | GREGORY J, BERTHOUD L, TRYFONAS T, et al. The long and winding road: MBSE adoption for functional avionics of spacecraft[J]. Journal of Systems and Software, 2020, 160: 110453. |
8 | 蒲毅, 周鹏程, 孙鹏, 等. 民用飞机机载系统正向研制体系创新研究[C]∥中国企业改革发展优秀成果2019(第三届)下卷. 北京: 中国商务出版社, 2019: 447-470. |
PU Y, ZHOU P C, SUN P, et al. Innovation Research on Forward Development System of Civil Aircraft Airborne System[C]∥3th The Collection For Achievements Of China Enterprise Reform and Development. Beijing: China Commerce and Trade Press, 2019: 447-470 (in Chinese). | |
9 | FRIEDENTHAL S, GRIEGO R, TRYFONAS T, et al. INCOSE model based systems engineering (MBSE) initiative[EB/OL]. (2015-01-29) [2023-02-21]. . |
10 | WU G H. A trio of commercial aircraft developments in China[J]. Engineering, 2021, 7(4): 424-426. |
11 | GOUGH K M, PHOJANAMONGKOLKIJ N. Employing model-based systems engineering (MBSE) on a NASA aeronautic research project: A case study[C]∥ 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3361. |
12 | 王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43(10): 2884-2892. |
WANG W H, BI W H, ZHANG A, et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892 (in Chinese). | |
13 | MALONE R, FRIEDLAND B, HERROLD J, et al. Insights from large scale model based systems engineering at boeing[J]. INCOSE International Symposium, 2016, 26(1): 542-555. |
14 | 程磊. 基于模型的系统工程与虚拟铁鸟解决方案[J]. 航空制造技术, 2013, 56(3): 100-102. |
CHENG L. Model based system engineering and virtual iron bird solution[J]. Aeronautical Manufacturing Technology, 2013, 56(3): 100-102 (in Chinese). | |
15 | 张柏楠, 戚发轫, 邢涛, 等. 基于模型的载人航天器研制方法研究与实践[J]. 航空学报, 2020, 41(7): 023967. |
ZHANG B N, QI F R, XING T, et al. Model based development method of manned spacecraft: research and practice[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 023967 (in Chinese). | |
16 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525. |
JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(9): 2516-2525 (in Chinese). | |
17 | 袁文强, 王保民, 陈波, 等. MBSE使能动车组高压系统领域智能高效生成方案[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 979-988. |
YUAN W Q, WANG B M, CHEN B, et al. Intelligent and efficient solution generation enabled by MBSE in high voltage system domain of EMU[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 979-988 (in Chinese). | |
18 | 张世聪, 陈波, 张晓晋, 等. 基于MBSE的动车组设计方法研究及应用[J]. 中国铁道科学, 2018, 39(2): 94-102. |
ZHANG S C, CHEN B, ZHANG X J, et al. Research and application of design method of electric multiple unit based on MBSE[J]. China Railway Science, 2018, 39(2): 94-102 (in Chinese). | |
19 | 陈娟, 周广明, 李欣桐, 等. 基于MBSE的综合传动装置需求分析[J]. 兵工学报, 2022, 43(S1): 11-20. |
CHEN J, ZHOU G M, LI X T, et al. MBSE-based requirement analysis of transmission system[J]. Acta Armamentarii, 2022, 43(Sup 1): 11-20 (in Chinese). | |
20 | GRIEVES M, VICKERS J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]∥KAHLEN J, FLUMERFELT S, ALVES A. Transdisciplinary Perspectives on Complex Systems. Cham: Springer, 2017: 85-113. |
21 | MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided Design and Applications, 2018, 15(6): 880-891. |
22 | ESTEFAN J. Of model-based systems engineering (MBSE) methodologies[R]. San Diego: International Council on Systems Engineering, 2008. |
23 | 汉斯-彼得·霍夫曼, 谷炼. 基于模型的系统工程最佳实践[M]. 北京: 航空工业出版社, 2014. |
HOFFMANN H, GU L. Model-based systems engineering best practices[M]. Beijing: Aviation Industry Press, 2014 (in Chinese). | |
24 | ROQUES P. MBSE with the ARCADIA method and the Capella tool[EB/OL]. (2016-03-21)[2023-02-21]. . |
25 | ALEKSANDRAVICIENE A, MORKEVICIUS A. MagicGrid book of knowledge[M]. Kaunas: Vitae Litera, 2018. |
26 | MAZEIKA D, MORKEVICIUS A, ALEKSANDRAVI⁃ CIENE A. MBSE driven approach for defining problem domain[C]∥2016 11th System of Systems Engineering Conference (SoSE). Piscataway: IEEE Press, 2016: 1-6. |
27 | FRIEDENTHAL S A, MOORE A, STEINER R. OMG systems modeling language (OMG SysML™) tutorial[C]∥INCOSE 2009 SINGAPORE. San Diego: International Council on Systems Engineering, 2009, 19(1): 1840-1972. |
28 | 孙霄剑, 罗明强, 张驰, 等. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 224222. |
SUN X J, LUO M Q, ZHANG C, et al. Construction technology of authoritative source of truth for civil aircraft pre-research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224222 (in Chinese). | |
29 | ROQUES P. Systems architecture modeling with the Arcadia method: A practical guide to Capella[M]. London: ISTE Press Ltd., 2018. |
30 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. CCAR-25-R4: Airworthiness standards: Transport category airplanes [S]. Beijing: Civil Aviation Authority of China, 2011 (in Chinese). | |
31 | Society of Automotive Engineers. Guidelines for development of civil aircraft and systems: SAE ARP4754A [S]. Warrendale: Society of Automotive Engineers, 2010. |
32 | International Organization for Standardization. Systems and software engineering - System life cycle processes: [S]. Switzerland: International Organization for Standardization, 2015. |
33 | 刘泽林, 钱仲焱, 陈泳. 基于概念图的民机概念设计要求识别与获取[J]. 计算机集成制造系统, 2015, 21(10): 2549-2557. |
LIU Z L, QIAN Z Y, CHEN Y. Identification and acquisition for conceptual design requirements of civil aircraft based on conceptual graphs[J]. Computer Integrated Manufacturing Systems, 2015, 21(10): 2549-2557 (in Chinese). | |
34 | DoD Architecture Framework Working Group. DoDAF architecture framework version 2.02[R]. Washington D. C.: USA Department of Defense, 2015. |
35 | HAUSE M, BLEAKLEY G, MORKEVICIUS A. Technology update on the unified architecture framework (UAF)[J]. INCOSE International Symposium, 2016, 26(1): 1145-1160. |
36 | 刘婧婷, 郭继坤, 邵芳. 基于统一体系结构框架的战区联合作战后勤与装备保障指挥信息系统架构[J]. 兵工学报, 2021, 42(2): 408-421. |
LIU J T, GUO J K, SHAO F. Architecture of theater logistics and equipment support command information system based on UAF[J]. Acta Armamentarii, 2021, 42(2): 408-421 (in Chinese). | |
37 | ZHENG H X, LIU X, WU J H, et al. The on-orbit mission analysis of OTV based on DoDAF[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(6): 937-945. |
38 | Object Management Group. Unified architecture framework profile (UAFP): Version 1.0 [S]. Milford: Object Management Group, 2017. |
39 | Object Management Group. Unified architecture framework (UAF) traceability between framework views and elements: version 1.0 [S]. Milford: Object Management Group, 2017. |
40 | 范秋岑, 毕文豪, 张安, 等. 民用飞机高度控制系统MBSE建模方法[J]. 系统工程与电子技术, 2022, 44(1): 164-171. |
FAN Q C, BI W H, ZHANG A, et al. MBSE modeling method of civil aircraft altitude control system[J]. Systems Engineering and Electronics, 2022, 44(1): 164-171 (in Chinese). | |
41 | 刘森, 杨德真, 冯强, 等. 基于DoDAF的飞行试验体系需求建模方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2021.0584 . |
LIU S, YANG D Z, FENG Q, et al. Modeling method of flight test requirements based on DoDAF[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2021.0584 . | |
42 | CUI Z Y, LUO M Q, ZHANG C, et al. MBSE for civil aircraft scaled demonstrator requirement analysis and architecting[J]. IEEE Access, 2022, 10: 43112-43128. |
43 | 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 20-26. |
SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 20-26 (in Chinese). | |
44 | 汤剑, 张兴娟, 袁修干, 等. 新型座舱压力调节器动态特性研究[J]. 飞机工程, 2005(4): 45-49. |
TANG J, ZHANG X J, YUAN X G, et al. Research on dynamic performance of new cabin’s pressure regulator[J]. Aircraft Engineering, 2005(4): 45-49 (in Chinese). | |
45 | 聂进方, 潘泉, 石国刚. 数字气动式座舱压力控制系统性能[J]. 南京理工大学学报, 2014, 38(1): 83-88. |
NIE J F, PAN Q, SHI G G. Performance of digital electro-pneumatic cabin pressure control system[J]. Journal of Nanjing University of Science and Technology, 2014, 38(1): 83-88 (in Chinese). |
[1] | 刘小川, 惠旭龙, 张欣玥, 白春玉, 闫亚斌, 李肖成, 牟让科. 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024, 45(5): 529664-529664. |
[2] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[3] | 李勐, 陈星伊, 陈吉昌, 吴彬, 童明波. 波浪情况下民机水上迫降性能数值分析[J]. 航空学报, 2024, 45(2): 28-43. |
[4] | 杨志刚, 张炯, 李博, 曾锐, 毛研勋. 民用飞机智能飞行技术综述[J]. 航空学报, 2021, 42(4): 525198-525198. |
[5] | 孙霄剑, 罗明强, 张驰, 关若曦, 刘虎. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 224222-224222. |
[6] | 胡晓义, 王如平, 王鑫, 付永涛. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 523436-523436. |
[7] | 张明辉, 陈真利, 顾文婷, 李栋, 张帅, 袁昌盛, 王龙, 张彬乾. 翼身融合布局民机高低速协调设计[J]. 航空学报, 2019, 40(9): 623052-623052. |
[8] | 何志全, 刘杨, 李泽江. 大型民用飞机缝翼全尺寸静力试验载荷设计[J]. 航空学报, 2019, 40(2): 522197-522197. |
[9] | 刘毓迪, 孙学德, 张存, 南国鹏. 民用飞机个人通风送风温度对人体舒适性的影响[J]. 航空学报, 2019, 40(2): 522363-522363. |
[10] | 陈名乾. 民用飞机商载航程图解析方程的建立及应用[J]. 航空学报, 2019, 40(2): 522407-522407. |
[11] | 许健, 吴磊, 褚江萍, 何珂. 民用飞机信息重构技术性能分析[J]. 航空学报, 2019, 40(2): 522442-522442. |
[12] | 刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5): 221712-221712. |
[13] | 陈俊平, 王立新. 低能量状态对飞行安全的危害及改出方法[J]. 航空学报, 2017, 38(8): 121077-121077. |
[14] | 郭媛媛, 孙有朝, 李龙彪. 基于蒙特卡罗方法的民用飞机故障风险评估方法[J]. 航空学报, 2017, 38(10): 221126-221126. |
[15] | 周虹, 陈志雄. 面向民用飞机排故的增强型符号有向图[J]. 航空学报, 2016, 37(12): 3821-3831. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学