[1] WANG R X, JIANG H K, LI X Q, et al. A reinforcement neural architecture search method for rolling bearing fault diagnosis[J]. Measurement, 2020, 154: 107417. [2] 张向阳, 陈果, 郝腾飞, 等. 基于机匣信号的滚动轴承故障卷积神经网络诊断方法[J]. 航空动力学报, 2019, 34(12): 2729-2737. ZHANG X Y, CHEN G, HAO T F, et al. Convolutional neural network diagnosis method of rolling bearing fault based on casing signal[J]. Journal of Aerospace Power, 2019, 34(12): 2729-2737 (in Chinese). [3] 王奉涛, 薛宇航, 王洪涛, 等. GLT-CNN方法及其在航空发动机中介轴承故障诊断中的应用[J]. 振动工程学报, 2019, 32(6): 1077-1083. WANG F T, XUE Y H, WANG H T, et al. GLT-CNN and its application of aero-engine intermediary bearing fault diagnosis[J]. Journal of Vibration Engineering, 2019, 32(6): 1077-1083 (in Chinese). [4] WANG X, ZHENG Y, ZHAO Z Z, et al. Bearing fault diagnosis based on statistical locally linear embedding[J]. Sensors (Basel, Switzerland), 2015, 15(7): 16225-16247. [5] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104 (in Chinese). [6] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2587-2597. [7] WANG F, JIANG H K, SHAO H D, et al. An adaptive deep convolutional neural network for rolling bearing fault diagnosis[J]. Measurement Science and Technology, 2017, 28(9): 095005. [8] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8. LEI Y G, YANG B, DU Z J, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8 (in Chinese). [9] WEN L, GAO L, LI X Y. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. [10] GUO X J, CHEN L, SHEN C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502. [11] LEI J H, LIU C, JIANG D X. Fault diagnosis of wind turbine based on long short-term memory networks[J]. Renewable Energy, 2019, 133: 422-432. [12] SHAO H D, JIANG H K, ZHANG X, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26(11): 115002. [13] WANG Y L, YANG H B, YUAN X F, et al. Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder[J]. Journal of Process Control, 2020, 92: 79-89. [14] HUANG W Y, CHENG J S, YANG Y, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359: 77-92. [15] KHORRAM A, KHALOOEI M, REZGHI M. End-to-end CNN+LSTM deep learning approach for bearing fault diagnosis[J]. Applied Intelligence, 2021, 51(2): 736-751. [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778. [17] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[M]//Computer Vision—ECCV 2016. Cham: Springer International Publishing, 2016: 630-645. [18] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. [19] WEN L, LI X Y, GAO L. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J]. Neural Computing and Applications, 2020, 32(10): 6111-6124. [20] DU Y, WANG A M, WANG S, et al. Fault diagnosis under variable working conditions based on STFT and transfer deep residual network[J]. Shock and Vibration, 2020(1): 1274380. [21] ZHU H G, WANG R, ZHANG X D. Image captioning with dense fusion connection and improved stacked attention module[J]. Neural Processing Letters, 2021, 53(2): 1101-1118. [22] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems. Long Beach: NIPS, 2017: 3859-3869. [23] SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. [24] 昝涛, 王辉, 刘智豪, 等. 基于多输入层卷积神经网络的滚动轴承故障诊断模型[J]. 振动与冲击, 2020, 39(12): 142-149, 163. ZAN T, WANG H, LIU Z H, et al. A fault diagnosis model for rolling bearings based on a multi-input layer convolutional neural network[J]. Journal of Vibration and Shock, 2020, 39(12): 142-149, 163 (in Chinese). |