[1] 张兴金, 邓忠林. 浅谈纤维复合材料与中国大飞机[J]. 纤维复合材料, 2009, 26(2):24-26. ZHANG X J, DENG Z L. The discussion on carbon fiber composite and passenger-carrying aircraft of China[J]. Fiber Composites, 2009, 26(2):24-26(in Chinese). [2] WANG F J, ZHAO M, FU R, et al. Novel chip-breaking structure of step drill for drilling damage reduction on CFRP/Al stack[J]. Journal of Materials Processing Technology, 2021, 291:117033. [3] TANG L Y, LI P N, YU Z, et al. New drilling method for damage reduction of CFRP/Ti stacks drilling[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1-2):595-602. [4] RODRÍGUEZ A, CALLEJA A, DE LACALLE L N L, et al. Drilling of CFRP-Ti6Al4V stacks using CO2-cryogenic cooling[J]. Journal of Manufacturing Processes, 2021, 64:58-66. [5] JIA Z Y, CHEN C, WANG F J, et al. Analytical model for delamination of CFRP during drilling of CFRP/metal stacks[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5099-5109. [6] JAMES S, DANG C. Investigation of shear failure load in ultrasonic additive manufacturing of 3D CFRP/Ti structures[J]. Journal of Manufacturing Processes, 2020, 56:1317-1321. [7] MEI B, ZHU W D, DONG H Y, et al. Coordination error control for accurate positioning in movable robotic drilling[J]. Assembly Automation, 2015, 35(4):329-340. [8] XU J Y, JI M, CHEN M, et al. Investigation of minimum quantity lubrication effects in drilling CFRP/Ti6Al4V stacks[J]. Materials and Manufacturing Processes, 2019, 34(12):1401-1410. [9] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755. [10] ZHANG J L, LIAO W H, BU Y, et al. Stiffness properties analysis and enhancement in robotic drilling application[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12):5539-5558. [11] MALDONADO-ECHEGOYEN R, CASTILLO-CASTANEDA E, GARCIA-MURILLO M A. Kinematic and deformation analyses of a translational parallel robot for drilling tasks[J]. Journal of Mechanical Science and Technology, 2015, 29(10):4437-4443. [12] LIANG J, BI S S. Design and experimental study of an end effector for robotic drilling[J]. The International Journal of Advanced Manufacturing Technology, 2010, 50(1-4):399-407. [13] BU Y, LIAO W H, TIAN W, et al. Modeling and experimental investigation of Cartesian compliance characterization for drilling robot[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12):3253-3264. [14] YU Y, WANG R Q, WANG Y P, et al. Contact force controlled robotic polishing for complex PMMA parts with an active end-effector[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(4):2021012. [15] TAN K, SHI H, YUE Y, et al. Magnetorheological fluid based force feedback performance for main manipulator of invasive surgical robot[J]. Journal of Advanced Manufacturing Science and Technology, 2022, 2(2):2022007. [16] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (ONe-sided cell end effector) robotic drilling system[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 2002:1-5. [17] DEVLIEG R. Expanding the use of robotics in airframe assembly via accurate robot technology[J]. SAE International Journal of Aerospace, 2010, 3(1):198-203. [18] WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for theBoeing 787[J]. SAE International Journal of Aerospace, 2008, 1(1):811-816. [19] BRINKSMEIER E, FANGMANN S, MEYER I. Erratum to:orbital drilling kinematics[J]. Production Engineering, 2010, 4(2-3):307. [20] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese). [21] LIU H, ZHU W D, DONG H Y, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46:101-114. [22] WANG W, TIAN W, LIAO W H, et al. Error compensation of industrial robot based on deep belief network and error similarity[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73:102220. [23] 沙智华, 刘禹峰, 吴頔, 等. 螺旋铣孔末端执行器设计及其运动仿真分析[J]. 机床与液压, 2018, 46(13):84-87. SHA Z H, LIU Y F, WU D, et al. Design of helical milling hole-machining end effector and motion simulation analysis[J]. Machine Tool & Hydraulics, 2018, 46(13):84-87(in Chinese). [24] 杨浩然. 基于机器人系统的自动钻铆末端执行器设计[D]. 沈阳:沈阳航空航天大学, 2019:10-15. YANG H R. Design of automatic drilling and riveting end actuator based on robot system[D]. Shenyang:Shenyang Aerospace University, 2019:10-15(in Chinese). [25] 金洁,田威,李波. 一种自动钻铆末端执行器的设计[J]. 中国机械工程, 2020, 31(13):1555-1561. JIN J, TIAN W, LI B. Design of an automatic drilling-riveting end-effector[J]. China Mechanical Engineering, 2020, 31(13):1555-1561(in Chinese). [26] GRAY T, ORF D, ADAMS G. Mobile automated robotic drilling, inspection, and fastening[C]//SAE Technical Paper Series. Warrendale:SAE International, 2013:1-7. [27] ADAMS G. Next generation mobile robotic drilling and fastening systems[C]//SAE Technical Paper Series. Warrendale:SAE International, 2014:1-5. [28] ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8):879-906. [29] JANG J H, KIM S H, KWAK Y K. Calibration of geometric and non-geometric errors of an industrial robot[J].Robotica, 2001, 19(3):311-321. [30] ZHAO G, ZHANG P F, MA G C, et al. System identification of the nonlinear residual errors of an industrial robot using massive measurements[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59:104-114. [31] WANG D L, BAI Y, ZHAO J Y. Robot manipulator calibration using neural network and a camera-based measurement system[J]. Transactions of the Institute of Measurement and Control, 2012, 34(1):105-121. [32] PERVAIZ S, KANNAN S, HUO D H, et al. Ecofriendly inclined drilling of carbon fiber-reinforced polymers (CFRP)[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7-8):2127-2153. [33] OCHOA H, CORTESÃO R. Impedance control architecture for robotic-assisted micro-drilling tasks[J]. Journal of Manufacturing Processes, 2021, 67:356-363. [34] TIAN W,MEI D Q, LI P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953. [35] 曾远帆, 田威, 廖文和. 面向飞机自动钻铆系统的工业机器人精度补偿技术[J]. 航空制造技术, 2016, 59(18):46-52. ZENG Y F, TIAN W, LIAO W H. Industrial robot error compensation methods for aircraft automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2016, 59(18):46-52(in Chinese). [36] 吴朋. 轻型自主移动机器人制孔系统任务规划与自适应控制技术[D]. 南京:南京航空航天大学, 2017:3-6. WU P. Task planning and adaptive control technology for lightweight autonomous mobile robot drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:3-6(in Chinese). [37] 肖亮. 双机器人协同自动钻铆控制方法与应用[D]. 南京:南京航空航天大学, 2019:8-13. XIAO L. Dual robot cooperative automatic drilling and riveting control method and application[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:8-13(in Chinese). [38] 程思渺, 田威, 李波, 等. 一种优化相关性模型的机器人精度补偿方法[J]. 航空制造技术, 2021, 64(21):77-83. CHENG S M, TIAN W, LI B, et al. An accuracy compensation method for industrial robot based on optimized correlation model[J]. Aeronautical Manufacturing Technology, 2021, 64(21):77-83(in Chinese). [39] 王一军. 基于工业机器人的飞机壁板高速精确制孔系统研究[D]. 杭州:浙江大学, 2012:11-15. WANG Y J. Study on high-speed accurate drilling system of aircraft panels[D]. Hangzhou:Zhejiang University, 2012:11-15(in Chinese). [40] 陶永, 刘刚, 唐文忠, 等. 面向飞机柔性装配的航空制孔实验平台[J]. 科技资讯, 2013, 11(22):3-6. TAO Y, LIU G, TANG W Z, et al. The design and implement of aeronautical drilling experimental platform based on flexible track[J]. Science & Technology Information, 2013, 11(22):3-6(in Chinese). [41] 陈友东, 晏亮, 谷平平. 双机器人系统的碰撞检测算法[J]. 北京航空航天大学学报, 2013, 39(12):1644-1648. CHEN Y D, YAN L, GU P P. Detection collision algorithm for two-manipulator system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1644-1648(in Chinese). [42] SHEN N Y, GUO Z M, LI J, et al. A practical method of improving hole position accuracy in the robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8):2973-2987. [43] 沈孝栋. 制孔机器人在钻削力作用下变形与振动的研究[D]. 南京:南京航空航天大学, 2015:16-20. SHEN X D. The deformation and vibration simulations of drilling robot when suffering drilling forces[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:16-20(in Chinese). [44] DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145:346-352. [45] 方强, 李超, 费少华, 等. 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016, 37(2):727-737. FANG Q, LI C, FEI S H, et al. Stability analysis of robot boring system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):727-737(in Chinese). [46] VON DRIGALSKI F, HAFI L E, ELJURI P M U, et al. Vibration-reducing end effector for automation of drilling tasks in aircraft manufacturing[J]. IEEE Robotics and Automation Letters, 2017, 2(4):2316-2321. [47] TAO J F, QIN C J, LIU C L. Asynchroextracting-based method for early chatter identification of robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):273-285. [48] TAO J F, QIN C J, XIAO D Y, et al. Timely chatter identification for robotic drilling using a local maximumsynchrosqueezing-based method[J]. Journal of Intelligent Manufacturing, 2020, 31(5):1243-1255. [49] TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12):2755-2764. [50] 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8):1517-1525. DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8):1517-1525(in Chinese). [51] TIAN W,ZHOU Z F, LIAO W H. Analysis and investigation of a rivet feeding tube in an aircraft automatic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2015, 82(5-8):973-983. [52] DONG S, LIAO W H, ZHENG K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151:868-876. [53] 费少华, 方强, 孟祥磊, 等. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. 浙江大学学报(工学版), 2012, 46(7):1157-1161, 1181. FEI S H, FANG Q, MENG X L, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7):1157-1161, 1181(in Chinese). [54] LEALI F, VERGNANO A, PINI F, et al. Aworkcell calibration method for enhancing accuracy in robot machining of aerospace parts[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):47-55. [55] GAO Y H, WU D, DONG Y F, et al. The method of aiming towards the normal direction for robotic drilling[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6):787-794. [56] ZHU W D, QU W W, CAO L H, et al. An off-line programming system for robotic drilling in aerospace manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2535-2545. [57] 唐越, 郑金辉, 张冒. 面向飞机装配自动制孔系统研究现状分析[J]. 世界制造技术与装备市场, 2020, 169(4):73-76. TANG Y, ZHENG J H, ZHANG M. Analysis on the present situation of automatic hole making system for aircraft assembly[J]. World Manufacturing Engineering & Market, 2020, 169(4):73-76(in Chinese). [58] EGUTI C C A, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545. [59] FROMMKNECHT A, KUEHNLE J, EFFENBERGER I, et al. Multi-sensor measurement system for robotic drilling[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47:4-10. [60] 姚艳彬, 毕树生, 员俊峰, 等. 飞机部件机器人自动制孔控制系统设计与分析[J]. 中国机械工程, 2010, 21(17):2021-2024. YAO Y B, BI S S, YUN J F, et al. Design and analyses of robot automatic drilling control system of aircraft components[J]. China Mechanical Engineering, 2010, 21(17):2021-2024(in Chinese). [61] 布音. 工业机器人精密制孔系统刚度特性研究[D]. 南京:南京航空航天大学, 2017:120-132. BU Y. Analysis of stiffness properties for robotic precise drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:120-132(in Chinese). [62] WANG G F, DONG H Y, GUO Y J, et al. Dynamic cutting force modeling and experimental study of industrial robotic boring[J]. The International Journal of Advanced Manufacturing Technology, 2015, 86(1-4):179-190. [63] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101:102-110. [64] 张杨, 高明辉, 周万勇, 等. 自动钻铆系统中工业机器人协同控制技术研究[J]. 航空制造技术, 2013, 56(20):87-90, 94. ZHANG Y, GAO M H, ZHOU W Y, et al. Research on industrial robot cooperative control technology for automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2013, 56(20):87-90, 94(in Chinese). [65] SUN L F, LIANG F Y, FANG L J. Design and performance analysis of an industrial robot arm for robotic drilling process[J]. Industrial Robot:The International Journal of Robotics Research and Application, 2019, 46(1):7-16. [66] 夏自祥, 崔祥府, 张利. 机器人小孔激光切割系统设计[J]. 制造技术与机床, 2021(10):14-17. XIA Z X, CUI X F, ZHANG L. Design of robot laser cutting system for small hole[J]. Manufacturing Technology & Machine Tool, 2021(10):14-17(in Chinese). [67] REID E. Development of portable and flexible track positioning system for aircraft manufacturing processes[C]//SAE Technical Paper Series. Warrendale:SAE International, 2007:1-8. [68] 陈彪, 刘华东, 卜泳, 等. 柔性导轨自动制孔设备制孔试验研究[J]. 航空制造技术, 2011, 54(22):78-80. CHEN B, LIU H D, BU Y, et al. Research on drilling experiment of flexible track automatic drilling equipment[J]. Aeronautical Manufacturing Technology, 2011, 54(22):78-80(in Chinese). [69] 刘冬. 面向飞机制孔的爬行、定位一体化冗余驱动并联机器人研究[D]. 上海:上海交通大学, 2013:8-10. LIU D. Research on crawling-positioning integrated parallel robot with redundant actuation for drilling of aircraft component[D]. Shanghai:Shanghai Jiao Tong University, 2013:8-10(in Chinese). [70] 冯康瑞. 基于视觉引导的机器人激光打孔系统设计研究[D]. 武汉:湖北工业大学, 2020:7-8. FENG K R. Design and research of robot laser punching system based on vision guidance[D]. Wuhan:Hubei University of Technology, 2020:7-8(in Chinese). [71] 邹方. 飞机装配迎来机器人时代[J]. 航空制造技术, 2009, 52(24):34-37. ZOU F. Robotic era for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2009, 52(24):34-37(in Chinese). [72] 甘露, 姚艳彬, 魏超. 爬行机器人制孔系统在飞机装配中的应用研究[J]. 航空制造技术, 2013, 56(20):80-82, 86. GAN L, YAO Y B, WEI C. Research on application of crawler robot drilling system in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2013, 56(20):80-82, 86(in Chinese). [73] MARGUET B, CIBIEL C, DE FRANCISCO Ó, et al. Crawler robots for drilling and fastener installation:an innovative breakthrough in aerospace automation[C]//SAE Technical Paper Series. Warrendale:SAE International, 2008:1-10. [74] 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术[J]. 航空制造技术, 2012, 55(19):40-43. WANG M, CHEN W L, ZHANG D L, et al. Light-weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012, 55(19):40-43(in Chinese). [75] 韩锋. 面向飞机装配的轻型自主爬行钻铆系统[D]. 南京:南京航空航天大学,2015:11-14. HAN F. Lightweight auto-crawling drilling & riveting system for aircraft assembly[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:11-14(in Chinese). |