[1] 杨智春, 贾有. 动载荷的识别方法[J]. 力学进展, 2015, 45(1):29-54. YANG Z C, JIA Y. The identification of dynamic loads[J]. Advances in Mechanics, 2015, 45(1):29-54(in Chinese). [2] YAN G, SUN H, BÜYVKÖZTVRK O. Impact load identification for composite structures using bayesian regularization and unscented Kalman filter[J]. Structural Control and Health Monitoring, 2017,24(5):e1910. [3] 贾有, 杨智春. 一种飞机垂尾抖振载荷识别的新方法[J]. 航空学报, 2013, 34(10):2333-2340. JIA Y, YANG Z C. A new approach to identify buffet loads for aircraft vertical tail[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2333-2340(in Chinese). [4] 史加荣, 马媛媛. 深度学习的研究进展与发展[J]. 计算机工程与应用, 2018, 54(10):1-10. SHI J R, MA Y Y. Research progress and development of deep learning[J]. Computer Engineering and Applications, 2018, 54(10):1-10(in Chinese). [5] MITSUI Y,CAO X,SUGIYAMA Y.Application of artificial neural networks to load identification[J]. Computers & structures,1998,69(1):63-78. [6] COOPER S B, DIMAIO D D. Static load estimation using artificial neural network:Application on a wing rib[J]. Advances in Engineering Software,2018,125:113-125. [7] STASZEWSKI W J, WORDEN K, WARDLE R, et al. Fail-safe sensor distributions for impact detection in composite materials[J]. Smart Materials and Structures,2000, 9(3):298-303. [8] GHAJARI M, SHARIF-KHODAEI Z, ALIABADI M H, et al. Identification of impact force for smart composite stiffened panels[J]. Smart Materials & Structures, 2013, 22(22):085014. [9] WANG J Y. MIMO SVM based uncorrelated multi-source dynamic random load identification algorithm in frequency domain[J]. Journal of Computational Information Systems, 2015,22(11):8165-8176. [10] FANG X Y, ZHANG J, ZHAO Y X, et al. Nonlinear identification of one-stage spur gearbox based on pseudo-linear neural network[J].Neurocomputing, 2018, 308(25):75-86. [11] REN S F, CHEN G R, LI T G, et al. A deeplearning-based computational algorithm for identifying damage load condition:An artificial intelligence inverse problem solution for failure analysis[J]. Computer Modeling in Engineering & Sciences, 2018,12:287-307. [12] CHEN G R, LI T G, CHEN Q J, et al. Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures[J]. Computational Mechanics, 2019, 64(2):435-449. [13] ZHOU J M, DONG L L, GUAN W,et al. Impact load identification of nonlinear structures using deep recurrent neural network[J]. Mechanical Systems and Signal Processing,2019,133(1):106292. [14] WAIBEL A, HANAZAWA T, HINTON G,et al.Phoneme recognition using time-delay neural networks[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(3):328-339. [15] POVEY D, CHENG G, WANG Y,et al. Semi-orthogonal low-rank matrix factorization for deep neural networks[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association (INTERSPEECH 2018), 2018. [16] PEDDINTI V, CHEN G, POVEY D,et al. An i-vector based time delay neural network architecture for far field recognition[C]//16th Annual Conference of the International Speech Communication Association,2015. [17] PROAKIS J G, MANOLAKIS D G.数字信号处理——原理、算法与应用(第四版)[M].方艳梅,刘永清, 译.北京:电子工业出版社,2014:60-65. PROAKIS J G, MANOLAKIS D G. Digital signal processing-principles, algorithms and applications (Fourth Edition)[M].FANG Y M,LIU Y Q,translated.Beijing:Publishing Houes of Electronics Industry,2014:60-65(in Chinese). |