[1] 宋拥政, 舒鑫源, 李中守. 航空航天钣金冲压件制造技术[M]. 北京:机械工业出版社, 2013:16-18. SONG Y Z, SHU X Y, LI Z S. Manufacturing technology of aerospace sheet metal stamping parts[M]. Beijing:China Machine Press, 2013:16-18(in Chinese). [2] 骞西昌, 杨守杰, 张坤, 等. 铝合金在运输机上的应用与发展[J]. 轻合金加工技术, 2005, 33(10):1-7. QIAN X C, YANG S J, ZHANG K, et al. Development and application of aluminum alloys on the transport planes[J]. Light Alloy Fabrication Technology, 2005, 33(10):1-7(in Chinese). [3] 罗先甫, 查小琴, 夏申琳. 2×××系航空铝合金研究进展[J]. 轻合金加工技术, 2018, 46(9):17-25. LUO X F, ZHA X Q, XIA S L. Research progress of 2×××series aviation aluminum alloys[J]. Light Alloy Fabrication Technology, 2018, 46(9):17-25(in Chinese). [4] 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9):1705-1715. LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9):1705-1715(in Chinese). [5] ROHATGI A, SOULAMI A, STEPHENS E V, et al. An investigation of enhanced formability in AA5182-O Al during high-rate free-forming at room-temperature:Quantification of deformation history[J]. Journal of Materials Processing Technology, 2014, 214(3):722-732. [6] AZARYAN N S, SHIRKOV G D, ZHURAUSKI A Y, et al. Manufacture of superconducting niobium cavity parts by hydropercussion punching[J]. Physics of Particles and Nuclei Letters, 2016, 13(2):218-223. [7] HOMBERG W, DJAKOW E, AKST O, et al. Investigation of a pneumo-mechanical high speed forming process with respect to the forming of complex sheet and tube components[J]. Journal of Mechanical Engineering NTUU, 2013, 67(1):180-185. [8] KHODKO O, ZAYTSEV V, SUKAYLO V, et al. Experimental and numerical investigation of processes that occur during high velocity hydroforming technologies:An example of tubular blank free bulging during hydrodynamic forming[J]. Journal of Manufacturing Processes, 2015, 20:304-313. [9] 郎利辉, 王少华, 杨春雷, 等. 新型冲击充液复合成形工艺及其关键技术研究[J]. 锻压技术, 2014, 39(7):1-5. LANG L H, WANG S H, YANG C L, et al. Research of innovative hybrid impact hydroforming process and its key technology[J]. Forging & Stamping Technology, 2014, 39(7):1-5(in Chinese). [10] 徐勇, 张士宏, 马彦, 等. 新型液压成形技术的研究进展[J]. 精密成形工程, 2016, 8(5):7-14. XU Y, ZHANG S H, MA Y, et al. Hydroforming technology:State-of-the-arts and recent developments[J]. Journal of Netshape Forming Engineering, 2016, 8(5):7-14(in Chinese). [11] 张士宏, 程明, 宋鸿武, 等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1):1-11. ZHANG S H, CHENG M, SONG H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1):1-11(in Chinese). [12] MA Y, XU Y, ZHANG S H, et al. Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming[J]. CIRP Annals, 2018, 67(1):281-284. [13] ABD EL-ATY A, XU Y, ZHANG S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy[J]. Journal of Advanced Research, 2019, 18:19-37. [14] CHEN D Y, XU Y, ZHANG S H, et al. A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming[J]. Journal of Materials Processing Technology, 2021, 287:116553. [15] XU Y, ABD EL-ATY A, ZHANG S H, et al. Effect of novel impact hydroforming technology on the formability of Al alloys[J]. IOP Conference Series:Materials Science and Engineering, 2019, 651:012053. [16] ZHANG S H, MA Y, XU Y, et al. Effect of impact hydroforming loads on the formability of AA5A06 sheet metal[J]. IOP Conference Series:Materials Science and Engineering, 2018, 418:012114. [17] CHU T H, FUH K H, YEH W C. Experimental optimization of deep drawing using response surface methodology[J]. Applied Mechanics and Materials, 2011, 121-126:1495-1499. [18] 卢松涛, 王培安. 基于响应面法和正交试验的墨顶盖翘曲变形优化[J]. 塑料, 2020, 49(4):65-68, 72. LU S T, WANG P A. Optimization of warpage deformation of ink cap based on response surface method and orthogonal experiment[J]. Plastics, 2020, 49(4):65-68, 72(in Chinese). [19] 姜天亮, 龚红英, 施为钟, 等. 基于响应曲面法U形件弯曲成形工艺参数优化[J]. 上海工程技术大学学报, 2019, 33(3):278-282. JIANG T L, GONG H Y, SHI W Z, et al. Process parameters optimization of U-shaped bending based on response surface methodology[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3):278-282(in Chinese). [20] BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1951, 13(1):1-38. [21] HU W, ENYING L, YAO L G. Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology[J]. Journal of Materials Processing Technology, 2008, 206(1-3):45-55. [22] 崔磊, 刘静, 李兰云. 基于响应面法的双层316L/Inconel625波纹管液压胀形工艺参数优化[J]. 兵器材料科学与工程, 2018, 41(6):19-26. CUI L, LIU J, LI L Y. Optimization of hydroforming process parameters of bi-layered 316L/Inconel625 bellows based on response surface method[J]. Ordnance Material Science and Engineering, 2018, 41(6):19-26(in Chinese). [23] MUSAVI S H, DAVOODI B, ESKANDARI B. Evaluation of surface roughness and optimization of cutting parameters in turning of AA2024 alloy under different cooling-lubrication conditions using RSM method[J]. Journal of Central South University, 2020, 27(6):1714-1728. [24] 胡成武, 李光, 毛远征, 等. 圆筒形件的拉深变形与应力分析[J]. 塑性工程学报, 2020, 27(3):130-136. HU C W, LI G, MAO Y Z, et al. Stress analysis and deformation of deep drawing for cylindrical part[J]. Journal of Plasticity Engineering, 2020, 27(3):130-136(in Chinese). [25] 仇建桐, 邓沛然, 邵威, 等. 基于Dynaform的铝合金筒形件拉深成形[J]. 锻压技术, 2020, 45(5):49-55. QIU J T, DENG P R, SHAO W, et al. Deep drawing of cylindrical parts for aluminum alloy based on Dynaform[J]. Forging & Stamping Technology, 2020, 45(5):49-55(in Chinese). [26] 陈绪国, 李继光, 张杰刚, 等. 2A12铝合金平底筒形件充液拉深数值模拟研究[J]. 精密成形工程, 2015, 7(6):86-91. CHEN X G, LI J G, ZHANG J G, et al. Numerical simulation of 2A12 aluminum flat bottom cylindrical part by hydromechanical deep drawing[J]. Journal of Netshape Forming Engineering, 2015, 7(6):86-91(in Chinese). [27] 徐勇, 王震, 曾一畔, 等. LY12铝合金板材本构模型的构建及验证应用[J]. 塑性工程学报, 2020, 27(1):138-145. XU Y, WANG Z, ZENG Y P, et al. Establishment and verification of constitutive model of LY12 aluminum alloy sheet[J]. Journal of Plasticity Engineering, 2020, 27(1):138-145(in Chinese). [28] LIU Y H, WANG J, WANG D H. Numerical optimization on hot forging process of connecting rods based on RSA with experimental verification[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):3129-3135. [29] CHELLADURAI S J S, MURUGAN K, RAY A P, et al. Optimization of process parameters using response surface methodology:A review[J]. Materials Today:Proceedings, 2021, 37:1301-1304. [30] WANG L, LEE T C. Controlled strain path forming process with space variant blank holder force using RSM method[J]. Journal of Materials Processing Technology, 2005, 167(2-3):447-455. |