航空学报 > 2021, Vol. 42 Issue (10): 524831-524831   doi: 10.7527/S1000-6893.2020.24831

面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化

徐勇1,2, 尹阔2, 夏亮亮1, 门向南3, 曾一畔3, 张士宏1   

  1. 1. 中国科学院 金属研究所 师昌绪先进材料创新中心, 沈阳 110016;
    2. 华北理工大学 冶金与能源学院, 唐山 063210;
    3. 航空工业成都飞机工业(集团)有限责任公司, 成都 610092
  • 收稿日期:2020-10-09 修回日期:2020-10-28 发布日期:2020-12-25
  • 通讯作者: 张士宏 E-mail:shzhang@imr.ac.cn
  • 基金资助:
    国家自然科学基金(51875548);四川省科技计划项目(2019YFSY0050)

Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity

XU Yong1,2, YIN Kuo2, XIA Liangliang1, MEN Xiangnan3, ZENG Yipan3, ZHANG Shihong1   

  1. 1. China Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
    2. College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China;
    3. AVIC Chengdu Aircraft Industrial(Group) Co. Ltd., Chengdu 610092, China
  • Received:2020-10-09 Revised:2020-10-28 Published:2020-12-25
  • Supported by:
    National Natural Science Foundation of China (51875548); Sichuan Science and Technology Program (2019YFSY0050)

摘要: 为实现冲击液压成形下LY12铝合金薄壁深腔构件的一道次成形,采用响应面法结合冲击液压成形实验进行成形中的工艺参数优化研究。以减薄率和贴模率为响应量,压边力和冲击压力为优化变量,建立响应量与优化变量间的响应模型。选择中心复合设计法进行实验设计,通过Design Expert 12软件设计实验方案,分别建立关于减薄率的一阶响应模型和关于贴模率的二阶响应模型。优化结果表明当压边力为1.443 MPa、冲击压力为12.594 MPa时可满足减薄率和贴模率优化条件。通过验证实验得到的筒形件其减薄率和贴模率与预测值相对误差不超过5%。研究结果表明建立的响应面模型准确性和预测性良好,采用优化后的工艺参数成形的筒形件满足减薄率和贴模率要求。

关键词: 航空复杂薄壁构件, 冲击液压成形, 响应面法, 中心复合设计, 工艺参数优化

Abstract: To realize one-step forming of aeronautical components of LY12 aluminum alloy sheets with thin wall and deep cavity by impact hydroforming, the response surface method combined with the impact hydroforming experiment was employed to optimize the process parameters. A model for the response between the response quantity and the optimization variable was established by taking the thinning rate and the sticking rate as the response quantity, and the blank holder force and impact force as optimization variables. The central composite design method was selected for experimental design, and experimental scheme was designed with the software of Design Expert 12. The first-order response model on the thinning rate and the second-order response model on the sticking rate were established. The optimization results show that when the blank holder force is 1.443 MPa and the impact force is 12.594 MPa, the requirements for thinning rate and filming rate can be reached at the same time. The relative error between the thinning rate and the predicted value is less than 5%. The results show that the proposed response surface model has good accuracy and predictability. The cylindrical components formed by the optimized process parameters meet the requirements on product quality.

Key words: aeronautical complex-shaped thin-walled component, impact hydroforming, response surface method, central composite design, process parameters optimization

中图分类号: