[1] |
CALOMINO A, BRUCE W, GAGE P, et al. Evaluation of the NASA arc jet capabilities to support mission requirements:20110007355[J]. Washington, D.C.:NASA, 2010.
|
[2] |
BUGEL M, REYNIER P, SMITH A. Review of European aerodynamics and aerothermodynamics capabilities for sample return missions[C]//Proceedings of the 6th European Symposium on Aerodynamics for Space Vehicles, 2008.
|
[3] |
LU F K. Advanced hypersonic test facilities[M]. Reston, VA:AIAA, 2002.
|
[4] |
MACDERMOTT W, HORN D, FISHER C. Flow contamination and flow quality in arc heaters used for hypersonic testing[C]//17th Aerospace Ground Testing Conference. Reston, VA:AIAA, 1992.
|
[5] |
SMITH R K, WAGNER D A, CUNNINGHAM J, et al. High enthalpy material test facility design improvements in Japan[C]//25th Plasmadynamics and Lasers Conference. Reston, VA:AIAA, 1994.
|
[6] |
MITSUDA M, ODA T, TAGASHIRA S, et al. On the characteristics of a plasma arc heater for a high enthalpy wind tunnel[C]//32nd Thermophysics Conference. Reston, VA:AIAA, 1997.
|
[7] |
MENART J, LIN L. Numerical study of a free-burning argon arc with copper contamination from the anode[J]. Plasma Chemistry and Plasma Processing, 1999, 19(2):153-170.
|
[8] |
LUO L, WANG Y, LIU L, et al. Ablation behavior of C/SiC composites in plasma wind tunnel[J]. Carbon, 2016, 103:73-83.
|
[9] |
BOLSHOV M A, KURITSYN Y A, ROMANOVSKII Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 106:45-66.
|
[10] |
HANSON R K, SPEARRIN R M, GOLDENSTEIN C S. Spectroscopy and optical diagnostics for gases[M]. Cham:Springer, 2016.
|
[11] |
KIM S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. Stanford,CA:Stanford University, 2004.
|
[12] |
NATIONS M, CHANG L S, JEFFRIES J B, et al. Characterization of a large-scale arcjet facility using tunable diode laser absorption spectroscopy[J]. AIAA Journal, 2017,55(11):3757-3766.
|
[13] |
NATIONS M. Laser-based diagnostics of electronically excited oxygen atoms at extreme temperatures[D]. Stanford,CA:Stanford University, 2016.
|
[14] |
WERNITZ R, EICHHORN C, HERDRICH G, et al. Plasma wind tunnel investigation of european ablators in air using emission spectroscopy[C]//42nd AIAA Thermophysics Conference. Reston, VA:AIAA, 2011.
|
[15] |
LOHLE S, HERMANN T, ZANDER F, et al. Echelle spectroscopy for high enthalpy flow diagnostics[C]//46th AIAA Thermophysics Conference. Reston, VA:AIAA, 2016.
|
[16] |
HERMANN T, LOHLE S, ZANDER F, et al. Characterization of a reentry plasma wind-tunnel flow with vacuum-ultraviolet to near-infrared spectroscopy[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3):673-688.
|
[17] |
欧东斌,陈连忠,董永晖.电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J].实验流体力学, 2015, 29(3):62-67. OU D B, CHEN L Z, DONG Y H. Measurements of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):62-67(in Chinese).
|
[18] |
LIN X, OU D B, PENG J L, et al. Cooling-water leakage diagnosis using optical emission spectroscopy for a large-scale arc-heated facility[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4), 900-906.
|
[19] |
曾徽,陈连忠,林鑫,等.电弧加热器高温流场激光吸收光谱诊断[J].实验流体力学, 2017, 31(4):28-33. ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectroscopy diagnostics in the arc-heater of an arcjet facility[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4):28-33(in Chinese).
|
[20] |
陈卫,伍越,黄祯君.基于TDLAS的电弧风洞流场Cu组分监测[J].航空学报, 2019, 40(8):122841. CHEN W, WU Y, HUANG Z J. Monitoring copper species in flow of arc-heated wind tunnel based on TDLAS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122841(in Chinese).
|
[21] |
KIM S, JEFFRIES J, HANSON R, et al. Measurements of gas temperature in the arc-heater of a large scale arcjet facility using tunable diode laser absorption[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005.
|
[22] |
NATIONS M M, CHANG L S, JEFFRIES J B, et al. Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy[C]//44th AIAA Plasmadynamics and Lasers Conference. Reston, VA:AIAA, 2013.
|
[23] |
PARK C. Evaluation of real-gas phenomena in high-enthalpy aerothermal test facilities:A review[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3):257-265.
|
[24] |
COLONNA G, CAPITELLI M. A few level approach for the electronic partition function of atomic systems[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2009, 64(9):863-873.
|
[25] |
KRAMIDA A, RALCHENKO Y, READER J. NIST atomic spectra database (version 5.7.1)[EB/OL].(2019-08-10)[2019-09-23]. https://physics.nist.gov/asd.
|
[26] |
GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. I. Analysis:NASA-RP-1311[R]. Washington, D.C.:NASA, 1994.
|
[27] |
WINOVICH W. On the equilibrium sonic-flow method for evaluating electric-arc air-heater performance[M]. Washington, D.C.:NASA, 1964.
|
[28] |
THOMPSON C, PRABHU D, TERRAZAS-SALINAS I, et al. Bulk enthalpy calculations in the arc jet facility at NASA ARC[C]//42nd AIAA Thermophysics Conference. Reston, VA:AIAA, 2011.
|
[29] |
NICOLET W E, SHEPARD C E, CLARK K J, et al. Analytical and design study for a high-pressure, high-enthalpy constricted arc heater:AEDC TR-75-47[R]. Arnold, CA:Arnold Engineering Development Center, 1975.
|