[1] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J].航空学报, 2019, 40(9):222907. FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(9):222907(in Chinese). [2] 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J].航空学报, 2019, 40(1):522484. WANG C X, GAO H M, GONG X, et al. Impact responses of aeronautic riveting structures[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522484(in Chinese). [3] 冉春, 陈鹏万, 李玲, 等. 中高应变率条件下TC18钛合金动态力学行为的实验研究[J].兵工学报, 2017, 38(9):1723-1728. RAN C, CHEN P W, LI L, et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J].Acta Armamentarii, 2017, 38(9):1723-1728(in Chinese). [4] 陈尧, 宋磊, 张宸恺, 等. 38CrMoAl液压柱塞无白亮层低温离子渗氮工艺研究[J].机械工程学报, 2017, 53(22):81-86. CHEN Y, SONG L, ZHANG C K, et al. Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J].Journal of Mechanical Engineering, 2017, 53(22):81-86(in Chinese). [5] NIU L, QIU S T, ZHAO J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet[J].Journal of Iron and Steel Research, 2018, 30(5):359-367. [6] 宋宗尧. 65Mn及38CrMoAlA钢的高温组织与力学性能的适应性研究[D]. 沈阳:东北大学, 2010. SONG Z Y. A study on the adaptability of 65Mn and 38CrMoAlA's mechanical property and high temperature structure[D]. Shenyang:Northeastern University, 2010(in Chinese). [7] LIU J, HAO X, LI S, et al. Effect of pre-corrosion on fatigue life of high strength steel 38CrMoAl[J].Journal of Wuhan University of Technology-Materials Science Edtion, 2011, 26(4):648-653. [8] CHEN Y, SONG L, ZHANG C, et al. Plasma nitriding without formation of compound layer for 38CrMoAl hydraulic plunger[J].Vacuum, 2017, 143:98-101. [9] TONG W P, HAN Z, WANG L M, et al. Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J].Surface and Coatings Technology, 2008, 202(20):4957-4963. [10] HUA X Z, ZHOU L, CUI X, et al. The effect of ammonia water on the microstructure and performance of plasma electrolytic saturation nitriding layer of 38CrMoAl steel[J].Physics Procedia, 2013, 50:304-314. [11] GAN M, PU W, SHEN L, et al. Mechanical properties of nitrogen implanted 38CrMoAl nitrided steel[J].Surface and Coatings Technology, 1994, 66(1-3):288-290. [12] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J].爆炸与冲击, 2018, 38(4):804-810. GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J].Explosion and Shock Waves, 2018, 38(4):804-810(in Chinese). [13] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击, 2014, 33(9):153-158. LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J].Journal of Vibration and Shock, 2014, 33(9):153-158(in Chinese). [14] MCWILLIAMS B, PRAMANIK B, KUDZAL A, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel[J].Additive Manufacturing, 2018, 24:432-439. [15] ZHOU P, LIANG Z Y, HUANG M X. Microstructural evolution of a nanotwinned steel under extremely high-strain-rate deformation[J].Acta Materialia, 2018, 149:407-415. [16] 武海军, 姚伟, 黄风雷, 等. 超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报, 2010, 30(3):258-262. WU H J, YAO W, HUANG F L, et al. Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel[J].Transactions of Beijing Institute of Technology, 2010, 30(3):258-262(in Chinese). [17] XIE J L, ZHNAG Q M, WANG X Y, et al. Determination of gruneisen EOS of MSN alloy steel under high pressure[J].Journal of Beijing Institute of Technology (English Edition), 2003, 12(2):154-157. [18] 李硕. 强冲击载荷下35CrMnSi动态力学行为与断裂机理研究[D]. 太原:中北大学, 2015. LI S. Study on dynamic mechanical behavior and fracture mechanism of 35CrMnSi under high impact load[D]. Taiyuan:North University of China, 2015(in Chinese). [19] 吴志强, 唐正友, 李华英, 等. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J].金属学报, 2012, 48(5):593-600. WU Z Q, TANG Z Y, LI H Y, et al. Effect of strain rate on microstructure evolution and mechanical behavior of a low C high Mn TRIP/TWIP steels[J].Acta Metallurgica Sinica, 2012, 48(5):593-600(in Chinese). [20] WU C C, WANG S H, CHEN C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel[J].Scripta Materialia, 2007, 56(8):717-720. [21] ZHANG Q D, CAO Q, ZHANG X F. A modified Johnson-Cook model for advanced high-strength steels over a wide range of temperatures[J].Journal of Materials Engineering and Performance, 2014, 23(12):4336-4341. [22] KEITA O, DUBOS P A, CHOTTIN J, et al. Numerical prediction model of temperature effect on DP1000 steel damage during warm formability[J].Key Engineering Materials, 2015, 651-653:77-82. [23] XING W, XIONG L, TANG Q. Identification of constitutive equation parameters of 300M steel based on improved temperature model[J].China Mechanical Engineering, 2015, 26(17):2297-2301. [24] 郭鹏程, 曹淑芬, 叶拓, 等. 高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J].中国有色金属学报, 2017, 27(6):1075-1082. GUO P C, CAO S F, YE T, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy under high speed impact load[J].The Chinese Journal of Nonferrous Metals, 2017, 27(6):1075-1082(in Chinese). [25] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究[J].同济大学学报:自然科学版, 2016, 44(7):1071-1075. CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates[J].Journal of Tongji University (Natural Science), 2016, 44(7):1071-1075(in Chinese). [26] KHAN A S, BAIG M. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy[J].International Journal of Plasticity, 2011, 27(4):522-538. [27] KIM J H, KIM D, HAN H N, et al. Strain rate dependent tensile behavior of advanced high strength steels:Experiment and constitutive modeling[J].Materials Science and Engineering:A, 2013, 559:222. [28] BUCHELY M F, MARANON A. An engineering model for the penetration of a rigid-rod into a Cowper-Symonds low-strength material[J].Acta Mechanica, 2015, 226(9):2999-3010. [29] HAN L L, JING L, ZHAO L M. Finite element simulation of the flat-induced wheel-rail impact based on the Cowper-Symonds empirical model[J].Chinese Journal of High Pressure Physics, 2017, 31(6):785-793. [30] 谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正[J].爆炸与冲击, 2012(1):8-14. XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis[J].Explosion and Shock Waves, 2012(1):8-14(in Chinese). |