航空学报 > 2017, Vol. 38 Issue (8): 321171-321171   doi: 10.7527/S1000-6893.2017.321171

惯性信息辅助的大视角目标快速精确定位

曾庆化1,2, 潘鹏举1,2, 刘建业1,2, 王云舒1,2, 刘昇3   

  1. 1. 南京航空航天大学 自动化学院, 南京 211106;
    2. 卫星通信与导航协同创新中心, 南京 211106;
    3. 中航工业洛阳电光设备研究所, 洛阳 471009
  • 收稿日期:2017-02-10 修回日期:2017-03-12 出版日期:2017-08-15 发布日期:2017-04-26
  • 通讯作者: 曾庆化,E-mail:zengqh@nuaa.edu.cn E-mail:zengqh@nuaa.edu.cn
  • 基金资助:

    国家自然科学基金(61533008,61104188,61374115,61603181);江苏省普通高校研究生科研创新计划项目(KYLX15_0277);中央高校基本科研业务费专项资金(NS2015037)

Fast and accurate target positioning with large viewpoint based on inertial navigation system information

ZENG Qinghua1,2, PAN Pengju1,2, LIU Jianye1,2, WANG Yunshu1,2, LIU Sheng3   

  1. 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 211106, China;
    3. AVIC Luoyang Electro-optical Equipment Research Institute, Luoyang 471009, China
  • Received:2017-02-10 Revised:2017-03-12 Online:2017-08-15 Published:2017-04-26
  • Supported by:

    National Natural Science Foundation of China (61533008,61104188,61374115,61603181);Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0277);the Fundamental Research Funds for Central Universities (NS2015037)

摘要:

目标定位技术广泛应用于航空领域的侦察机、无人机等各类侦察打击任务中,目标定位精度的高低及效率对作战效果具有重要影响。针对仿射尺度不变的特征变换(ASIFT)算法对远距离大视角目标定位精度较低、速度较慢的问题,提出了一种基于惯性信息辅助的大视角目标快速精确定位方法。该方法首先对目标实测序列图像构造尺度空间,结合FAST特征检测与FREAK特征描述的方式进行匹配,实现对待定位目标的快速提取;然后利用机载惯性信息求解目标实测图与参考图之间的透视变换矩阵,利用该矩阵对实测图进行变换以减小图像间视角差异,克服了ASIFT算法盲目匹配计算的弊端,并通过FAST特征检测与FREAK特征描述相结合的方式提升了大视角图像的匹配速度;最后通过单应性矩阵映射关系实现对目标的精确定位。实验结果表明,大视角目标快速精确定位方法匹配耗时比ASIFT算法的减小了1个数量级,定位精度比目标平均值定位算法精度提高了1个数量级,有效提高了图像匹配定位在航空领域的应用效率。

关键词: 目标定位, 惯性导航, 大视角图像匹配, 目标提取, 定位精度

Abstract:

Target location technology is widely used in aircraft and missiles for getting the position information of air-attack targets. The attack effect is directly affected by the efficiency of the target localization method. Considering the problem of low precision and slow speed of the Affine Scale-Invariant Feature Transform (ASIFT) algorithm, a new positioning method based on inertial navigation system information is proposed. The scale space of the target real-time sequence images is constructed, and is matched with the combination of Features from Accelerated Segment Test (FAST) and Fast REtinA Keypoint (FREAK) description. Fast extraction of the target is then achieved. The homography matrix between the real-time and the reference images is solved by using the information of the airborne inertial navigation system. The real-time images are then transformed by the homography matrix to reduce the difference between the real-time and the reference images, so as to overcome the problem of blind multiple matching calculation of the ASIFT algorithm. Through the combination of FAST feature detection and FREAK feature description, the matching speed of large viewpoint images is enhanced. The target is accurately located in the reference image by the homography matrix. The experimental results indicate that the calculation speed is increased by one order of magnitude compared with that of the ASIFT algorithm, and the positioning accuracy is increased by one order of magnitude compared with that of the existing target average positioning algorithm. The method proposed in the paper will be helpful in improving the efficiency of the figure-matching in the aerial application.

Key words: target location, inertial navigation, large viewpoint image matching, target extraction, positioning accuracy

中图分类号: