[1] Zhang M M, Li S B, Hou A P, et al. A review of the research on blade flutter in turbomachinery[J]. Advances in Mechanics, 2011, 41(1): 26-38 (in Chinese). 张明明, 李绍斌, 候安平,等. 叶轮机械叶片颤振研究的进展与评述[J]. 力学进展, 2011, 41(1): 26-38.
[2] Liu W G, Feng Y C. Analysis of empirical flutter prediction method of blades and establishment of a flutter data bank[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1986(4): 113-122 (in Chinese). 刘文阁, 冯毓诚. 对经验法预测叶片失速颤振的分析及叶片颤振数据库的建立[J]. 北京航空学院学报, 1986(4): 113-122.
[3] Bendiksen O O. Aeroelastic problems in turbomachines[C]//31st Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1990: 1736-1761.
[4] Su D, Zhang W W, Zhang C A, et al. An unsteady aerodynamic modeling for turbomachinery based on system identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 242-248 (in Chinese). 苏丹, 张伟伟, 张陈安,等. 基于系统辨识技术的叶轮机非定常气动力建模方法[J]. 航空学报, 2012, 33(2): 242-248.
[5] Bendiksen O O, Friedmann P P. The effects of bending-torsion coupling of fan and compressor blade flutter[J]. Journal of Enigeering for Gas Turbines and Power, 1982, 104(3): 617-623.
[6] Zheng Y, Yang H. Coupled fluid-structure flutter analysis of a transonic fan[J].Chinese Journal of Aeronautics, 2011, 24(3): 258-264.
[7] Guo T Q, Lu Z L, Tang D, et al. A CFD/CSD model for aeroelastic calculations of large-scale wind turbines[J]. Science China Technological Sciences, 2013, 56(1): 205-211.
[8] Sadeghi M, Liu F. Coupled fluid-structure simulation for turbomachinery blade rows, AIAA-2005-0018[R]. Reston: AIAA, 2005.
[9] Hongsik I M, Chen X Y , Zha G C. Detached eddy simulation of transonic rotor stall flutter using a fully coupled fluid-structure interaction[C]//ASME 2011 Turbo Expo: Turbines Technical Conference and Exposition. New York: ASME, 2011: 1217-1230.
[10] Xu K N, Wang Y R. Application of time domain method in aeroelastic computations for compressor rotors[J]. Journal of Aerospace Power, 2011, 26(1): 191-197 (in Chinese). 徐可宁, 王延荣. 时域法在压气机转子气动弹性计算中的应用[J]. 航空动力学报, 2011, 26(1): 191-197.
[11] Quan J L, Zhang W W, Su D, et al. Flutter analysis of turbomachinery cascades based on a coupled CFD/CSD method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2019-2028 (in Chinese). 全金楼, 张伟伟, 苏丹, 等. 基于CFD/CSD时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013, 34(9): 2019-2028.
[12] Zhou S. Turbomachinery aeroelasticity introduction[M]. Beijing: National Defense Industry Press, 1986: 8-11 (in Chinese). 周盛. 叶轮机气动弹性力学引论[M]. 北京: 国防工业出版社, 1986: 8-11.
[13] Liou M S. A sequel to AUSM, Part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.
[14] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[15] Morton S A, Forsythe J R, Mitchell A M, et al. DES and RANS simulations of delta wing vortical flows, AIAA-2002-0587[R]. Reston: AIAA, 2002.
[16] Spalart P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1): 181-202.
[17] Spalart P R, Deck S, Shut M L,et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.
[18] Jiang Y W, Zhang W W, Ye Z Y. Study of time-marching method for fluid/structure coupling solution based on CFD technique[J]. Journal of Vibration Engineering, 2007, 20(4): 396-400 (in Chinese). 蒋跃文, 张伟伟, 叶正寅. 基于CFD技术的流场/结构时域耦合求解方法研究[J]. 振动工程学报, 2007, 20(4): 396-400.
[19] Smith M J, Hodges D H, Cesnik C E S. Evaluation of computational algorithms suitable for fluid-structure interactions[J]. Journal of Aircraft, 2000, 37(2): 282-294.
[20] Marshall J G. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures, 1996, 10(3): 237-267.
[21] Reid L, Moore R D. Design and overall performance of four highly-loaded, high speed inlet stages for an advanced high-pressure ratio core compressor, NASA TP-1337[R]. Washington, D. C.: NASA, 1978.
[22] Suder K L, Celestina M L. Experiment and computational investigation of the tip clearance flow in a transonic axial compressor rotor, NASA TM-106711[R]. Washington, D. C.: NASA, 1994.
[23] Denton J D. Lessons from rotor37[J]. Journal of Thermal Science, 1997, 6(1): 1-13.
[24] Lubomski J F. Status of NASA full-scale engine aeroelasticity research, NASA TM-81500[R]. Washington, D. C.: NASA, 1980. |