[1] Duncan J P, Mair S G. Sculptured surfaces in engineering and medicine[M]. Cambridge: Cambridge University Press, 1983: 126-130.
[2] Cao L X, Gong H, Liu J. Research on contact problem of surfaces and contact characteristics of offset surfaces[J]. Journal of Dalian University of Technology, 2007, 47(1): 39-44 (in Chinese). 曹利新, 宫虎, 刘健. 曲面接触问题及其等距面接触特性研究[J]. 大连理工大学学报, 2007, 47(1): 39-44.
[3] Yue Y, Jia J. Computing offsets of NURBS curve and surface[J]. Advanced Materials Research, 2012, 542: 537-540.
[4] Satoh N, Matsuyama K, Konno K, et al. High-quality approximation technique for two G1-continuous offset surfaces[J]. Computer-Aided Design and Applications, 2014, 11(1): 78-89.
[5] Saito T, Takahashi T. NC machining with G-buffer method[J]. Computer Graphics, 1991, 25(4): 207-216.
[6] Choi B K, Kim D H, Jerard R B. C-space approach to tool-path generation for die and mould machining[J]. Computer-Aided Design, 1997, 29(9): 657-669.
[7] Yan G R. Numerical control machining based on a stock-remaining model[D]. Beijing: Beihang University, 2001 (in Chinese). 闫光荣. 基于留量模型的数控加工[D]. 北京: 北京航空航天大学, 2001.
[8] Chen S, Yan G R. The intelligent machining based on stock-remaining model[J]. Computer Aided Engineering, 2000, 9(3): 25-32 (in Chinese). 陈杉, 闫光荣. 基于留量模型的智能加工[J]. 计算机辅助工程, 2000, 9(3): 25-32.
[9] Liu Y F, Ke Y L, Wang Q C, et al. Research on reverse engineering technology based on features[J]. Computer Integrated Manufacturing Systems, 2006, 12(1): 32-37 (in Chinese). 刘云峰, 柯映林, 王秋成, 等. 基于特征的反求工程技术研究[J]. 计算机集成制造系统, 2006, 12(1): 32-37.
[10] Zhang Y. Research for key techniques of adaptive numerical control machining for aero-engine blades[D]. Xi'an: Northwestern Polytechnical University, 2011 (in Chinese). 张莹. 叶片类零件自适应数控加工系统关键技术研究[D]. 西安: 西北工业大学, 2011.
[11] Lin X J, Chen Y, Wang Z W, et al. Model restructuring about leading edge and tailing edge of precision forging blade for adaptive machining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1695-1703 (in Chinese). 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5): 1695-1703.
[12] Zhang H, Liu H C, Zhang S W, et al. Reverse generation technology 3D intermediate procedure model for complex parts[J]. Computer Integrated Manufacturing Systems, 2015, 21(5): 1216-1221 (in Chinese). 张辉, 刘华昌, 张胜文, 等. 复杂零件三维中间工序模型逆向生成技术[J]. 计算机集成制造系统, 2015, 21(5): 1216-1221.
[13] DeCarlo D, Gallier J. Topological evolution of surfaces[J]. Graphics Interface, 1996, 96: 194-203.
[14] Lazarus F, Verroust A. Three-dimensional metamorphosis: A survey[J]. The Visual Computer, 1998, 14(8-9): 373-389.
[15] Lefebvre P, Lauwers B. 3D morphing for generating intermediate roughing levels in multi-axis machining[J]. Computer-Aided Design and Applications, 2005, 2(1-4): 115-123.
[16] Behera A K, Lauwers B, Duflou J R. Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques[J]. Key Engineering Materials, 2013, 554-557: 1408-1418.
[17] Han S R. New unified machining process planning using morphing technology[D]. California: University of California Los Angeles, 2011.
[18] Han S R, Yang D C H. Volume interior parameterization for automated unified machining process of freeform surfaces[M]. Berlin: Springer Berlin Heidelberg, 2012: 577-584.
[19] Huang B. A unified approach for integrated computer-aided design and manufacturing[D]. California: University of California Los Angeles, 2013.
[20] Zhang Z, Lin S L, Zhu Q D, et al. Genetic collision avoidance planning algorithm for irregular shaped object with kinematics constraint[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1348-1358 (in Chinese). 张智, 林圣琳, 朱齐丹, 等. 考虑运动学约束的不规则目标遗传避碰规划算法[J]. 航空学报, 2015, 36(4): 1348-1358. |