[1] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.[2] Goodenough J, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.[3] Huang C Y. Review of electronics sicence and technology[J]. Journal of China Acaderny of Elecronics and Information Technology, 2004(5): 1-6. (in Chinese) 黄才勇. 空间电源的研究现状与展望[J]. 电子科学技术评论, 2004 (5): 1-6.[4] Lee S W, Yabuuchi N, Gallant B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5(7): 531-537.[5] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.[6] Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.[7] AricòA S, Bruce P, Scrosat B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.[8] Arthur T, Bates D, Cirigliano N, et al. Three-dimensional electrodes and battery architectures[J]. MRS Bulletin, 2011, 36(7): 523-531.[9] Jiang T, Zhang S C, Qiu X P, et al. Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery[J]. Journal of Power Sources, 2007, 166(2): 503-508.[10] Jiang T, Zhang S C, Qiu X P, et al. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery[J]. Electrochemistry Communications, 2007, 9(5): 930-934.[11] Du Z J, Zhang S C, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance[J]. Electrochimica Acta, 2010, 55(10): 3537-3541.[12] Zhang S C, Xing Y L, Jiang T, et al. A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes[J]. Journal of Power Sources, 2011, 196(16): 6915-6919.[13] Liu W B, Zhang S C, Li N, et al. A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al-Cu alloy in an alkaline solution[J]. Microporous and Mesoporous Materials, 2011, 138(1-3): 1-7.[14] Liu W B, Zhang S C, Li N, et al. A general dealloying strategy to nanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions[J]. Corrosion Science, 2012, 58: 133-138.[15] Feng Y F, Zhang S C, Xing Y L, et al. Preparation and characterization of nanoporous Cu6Sn5/Cu composite by chemical dealloying of Al-Cu-Sn ternary alloy[J]. Journal of Materials Science, 2012, 47(16): 5911-5917.[16] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries[J]. Advanced Materials, 2005, 15(4): 547-556.[17] Wang Z Y, Li F, Ergang N S, et al. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites[J]. Chemistry of Materials, 2006, 18(23): 5543-5553.[18] Guo Y G, Hu Y S, Sig W, et al. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting network[J]. Advanced Materials, 2007, 19(16): 2087-2091.[19] Lee H Y, Lee S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2004, 6(5): 465-469.[20] Li F C, Ruffo R, Chan C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1): 491-495.[21] Zhang S C, Du Z J, Lin R X, et al. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Advanced Materials, 2010, 22(47), 5378-5382.[22] Du Z J, Zhang S C, Jiang T, et al. Improved electrochemical performance of nanostructured Si-based film modified by chemical etching[J]. Electrochimica Acta, 2012, 74: 222-226.[23] Du Z J, Zhang S C, Xing Y L, et al. Nanocone-arrays supported tin-based anode materials for lithium-ion battery[J]. Journal of Power Sources, 2011, 196(22): 9780-9785.[24] Du Z J, Zhang S C. Enhanced electrochemical performance of Sn-Co nanoarchitectured electrode for lithium ion batteries[J]. Journal of Physical Chemistry C, 2011, 115(47): 23603-23609.[25] Wu W M, Zhang S C, Wang L L, et al. Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage[J]. Journal of Materials Chemistry, 2012, 22(22): 11151-11158.[26] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature Materials, 2006, 5(7): 567-573.[27] Xing Y L, Wang Y J, Zhou C G, et al. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2561-2567.[28] Xing Y L, Fang B Z, Bonakdarpour A, et al. Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7859-7867.[29] Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699.[30] Du Z J, Zhang S C, Jiang T, et al. Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage[J]. Journal of Power Sources, 2012, 219: 199-203.[31] Du Z J, Zhang S C, Liu Y, et al. Facile fabrication of reticular polypyrrole-silicon core-shell nanofibers for high performance lithium storage[J]. Journal of Materials Chemistry, 2012, 22(23): 11636-11641.[32] Zhao J F, Zhang S C, Liu W B, et al. Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance[J]. Electrochimica Acta, 2014, 121: 428-433.[33] Hu Y S, Liu X, Müller J O, et al. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network[J]. Angewandte Chemie International Edition, 2008, 48(1): 210-214.[34] Nam K T, Kim D K, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes[J]. Science, 2006, 312(5775): 885-888.[35] Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9): 3370-3374. |