[1] Kunz R F, Lakshminarayana B. Stability of explicit Navier-Stokes procedures using k-ε and k-ω algebraic Reynolds stress turbulence models. Journal of Computational Physics, 1992, 103(1): 141-159.[2] Liu F, Zhang X. A strongly coupled time-marching method for solving the Navier-Stokes and k-ω turbulence model equations with multigrid. Journal of Computational Physics, 1996, 128(2): 289-300.[3] Barakos G, Drikakis D. Implicit unfactored implementation of two-equation turbulence models in compressible Navier-Stokes methods. International Journal for Numerical Methods in Fluids, 1998, 28(1): 73-94.[4] Lee S, Choi D W. On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations. International Journal for Numerical Methods in Fluids, 2006, 50(2): 165-197.[5] Yang J, Hsieh T, Wang C. Implicit weighted essentially nonoscillatory schemes with antidiffusive flux compressible viscous flows. AIAA Journal, 2009, 47(2): 1435-1444.[6] Huang J, Lin H, Yang J. Implicit preconditioned WENO scheme for steady viscous flow computation. Journal of Computational Physics, 2009, 228(2): 420-438.[7] Jahangirian A, Hadidoolabi M. An implicit solution of the unsteady Navier-Stokes equations on unstructured moving grids. ICAS-24, 2004.[8] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1994, 1(1): 5-21.[9] Yoon S, Jameson A. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations. NASA-CR-179524, 1986.[10] Roe P L. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics, 1981, 43(2): 357-372.[11] Harten A, Hyman J M. Self adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics, 1983, 50(2): 235-269.[12] van Leer B. Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. Journal of Computational Physics, 1979, 32(1): 101-136.[13] Yang A M, Yang X Q. Multigrid acceleration and chimera technique for viscous flow past a hovering rotor. Journal of Aircraft, 2011, 48(2): 713-715.[14] Yang X Q, Yang A M, Weng P F. The mltilgrid method in Euler equation computation about a helicopter rotor in hover. Acta Aerodynamica Sinica, 2009, 27(5): 608-615. (in Chinese) 杨小权, 杨爱明, 翁培锋. 悬停旋翼无黏流场数值模拟中的多重网格方法. 空气动力学学报, 2009, 27(5): 608-615.[15] Cook P H, McDonald M A, Firmin M C P. Aerofoil RAE 2822 pressure distributions and boundary layer and wake measurements. AGARD-AR-138, 1979.[16] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-Wing at transonic mach numbers, experimental data base for computer program assessment. AR-138-B1, 1979.[17] Landon R H. NACA0012 oscillatory and transient pitching. AGARD-R-702, 1982.[18] Zwaan R J. Lann wing pitching oscillations, compendium of unsteady aerodynamic measurements. AGARD-R-702, 1985.[19] Luo H, Joseph D, Rainald L. An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Journal of Computational Physics, 2001, 30(2): 137-159.[20] Yang X Q, Cheng S K, Yang A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 787-797. (in Chinese) 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟. 航空学报, 2013, 34(4): 787-797. |