[1] Anton P S, Johnson D J, Block M, et al. Wind tunnel and propulsion test facilities: supporting analyses to an assessment of NASA's capabilities to serve national needs, NASA TR-134[R]. Washington, D.C.: NASA, 2004.
[2] Johnson F T, Tinoco E N, Jong Y N. Thirty years of development and application of CFD at Boeing commercial airplane[J]. Computers & Fluids, 2005, 34(10): 1115-1151.
[3] Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180.
[4] Tinoco E N, Bogue D R, Kao T J, et al. Progress toward CFD for full flight envelope[J]. Aeronautical Journal, 2005, 109(1100): 451-460.
[5] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014.
[6] Rudnik R. CFD assessment for high lift flows in the European project EUROLIFT, AIAA-2003-3794[R]. Reston: AIAA, 2003.
[7] Rudnik R, Frhr. V. Geyr H. The European high lift project EUROLIFT Ⅱ—objectives, approach, and structure, AIAA-2007-4296[R]. Reston: AIAA, 2007.
[8] Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop, AIAA-2011-0862[R]. Reston: AIAA, 2011.
[9] Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop, AIAA-2011-0939[R]. Reston: AIAA, 2011.
[10] Wang Y T, Li S, Meng D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3213-3221 (in Chinese). 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12): 3213-3221.
[11] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801 (in Chinese). 孟德虹, 张玉伦, 王光学, 等. γ-Reθ 转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
[12] van Leer B. Towards the ultimate conservation differencesscheme II, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14(4): 361-370.
[13] Menter F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[14] Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: part 2—test cases and industrial application[J]. Journal of Turbomachinery, 2004, 128(3): 423-434.
[15] Menter F R, Langtry R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[16] Grab C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configuration[J]. Journal of Aircraft, 2013, 50(5): 1533-1539.
[17] Johnson P L, Jones K M, Madson M D. Experimental investigation of a simplified 3D high lift configuration of civil transport aircraft, AIAA-2008-0410[R]. Reston: AIAA, 2008.
[18] McGinley C B, Jenkins L N, Watson R D, et al. 3-D high-lift flow physics experiment-transition measurement, AIAA-2005-5148[R]. Reston: AIAA, 2005.
[19] Sclafani A J, Slotnick J P, Vassberg J C, et al. OVERFLOW analysis of the NASA trap wing wind tunnel model from the first high lift prediction workshop, AIAA-2011-0866[R]. Reston: AIAA, 2011.
[20] Sclafani A J, Slotnick J P, Vassberg J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model, AIAA-2012-2919[R]. Reston: AIAA, 2012. |