[1] Alexandru C, Pozna C. Simulation of a dual-axis solar tracker for improving the performance of a photovoltaic panel. Proceeding of the Institution of Mechanical Engineering, Part A: Journal of Power and Energy, 2010, 224(6): 797-811.[2] Haws T D, Bowman W J. Thermal analysis of the pathfinder aircraft. AIAA-1999-735, 1999.[3] Noth A. Design of solar powered airplanes for continuous flight. Suisse: Ecole Polytechnique Fédérale de Lausanne at ETH ZüRICH, 2008.[4] Keidel B. Auslegung und simulation von hochflie-genden dauerhaft stationierbaren solardrohnen. München: Fakultät für Maschinenwesen at Technischen Universität München, 2000.[5] Zhao Z M, Liu J Z, Sun X Y. Photovoltaic power generation and application. Beijing: Science Press, 2005: 43-72. (in Chinese) 赵争鸣, 刘建政, 孙晓英. 太阳能光伏发电及其应用. 北京: 科学出版社, 2005: 43-72.[6] Durisch W, Urban J, Pmestad G. Characterisation of solar cells and modules under actual operating conditions. Renewable Energy, 1996, 8(1-4): 359-366.[7] Incropera Frank P, Dewitt D P. Fundamentals of heat and mass transfer. 7th ed. New York: John Wiley & Sons, 2011.[8] NOAA, NASA, USAF. NOAA-S/T 76-1562, US standard atmosphere. 1976.[9] Kata J, Plotkin A. Low-speed aerodynamics: from wing theory to panel methods. New York: McGraw-Hill, Inc., 1991.[10] Daniel P R. Aircraft design: a conceptual approach. 3rd ed. Washington D.C.: American Institute of Aeronautics and Astronautics, Inc., 1999: 280-289.[11] Chang M, Zhou Z, Zheng Z C. Flight principles of solar-powered airplane and sensitivity analysis of its conceptual parameters. Journal of Northwestern Polytechnical University, 2010, 28(5): 792-796. (in Chinese) 昌敏, 周洲, 郑志成. 太阳能飞机原理及总体参数敏度分析. 西北工业大学学报, 2010, 28(5): 792-796. |