[1] Almer J D, Cohen J B, Winholtz R A. The effects of residual macrostresses and microstresses on fatigue crack propagation. Metallurgical Materials Transactions A, 1998, 29(8): 2127-2136.
[2] Carlson R L, Kardomateas G A, Bates P R. The effects of overloads in fatigue crack-growth. International Journal of Fatigue, 1991, 13(6): 453-460.
[3] Wheatley G, Hu X Z, Estrin Y. Effects of a single tensile overload on fatigue crack growth in 316L steel. Fatigue & Fracture Engineering Materials & Structures, 1999, 22(12): 1041-1051
[4] Makabe C, Purnowidodo A, McEvily A J. Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading. International Journal of Fatigue, 2004, 26(12): 1341-1348.
[5] Schijve J. Fatigue of structures and materials. 2nd ed. New York: Springer, 2008: 351-365.
[6] Wang H, Buchholz F G, Richard H A, et al. Numerical and experimental analysis of residual stresses for fatigue crack growth. Computational Materials Science, 1999, 16(1-4): 104-112.
[7] Lee S Y, Rogge R B, Choo H, et al. Neutron diffraction measurements of residual stresses around a crack tip developed under variable-amplitude fatigue loadings. Fatigue & Fracture of Engineering Materials & Structures, 2010, 22(12): 822-831.
[8] Suresh S, Giannakopoulos A E. A new method for estimating residual stress by instrumented sharp indentation. Acta Materialia, 1998, 46(16): 5755-5767.
[9] Carlsson S, Larsson P L. On the determination of residual stress and strain fields by sharp indentation testing. Part I: theoretical and numerical analysis. Acta Materialia, 2001, 49(12): 2179-2192.
[10] Carlsson S, Larsson P L. On the determination of residual stress and strain fields by sharp indentation testing. Part II: experiment investigation. Acta Materialia, 2001, 49(12): 2193-2203.
[11] Bolzon G, Buljak V. An indentation-based technique to determine in-depth residual stress profiles induced by surface treatment of metal components. Fatigue & Fracture Engineering Materials & Structures, 2011, 34(2): 97-107.
[12] Dougherty J D, Padovan J, Srivatsan T S. Fatigue crack propagation and closure behavior of modified 1071 steel: finite element study. Engineering Fracture Mechanics, 1997, 56(2): 189-212.
[13] Solanki K, Dabiewicz S R, Newman J C. A new methodology for computing crack opening values from finite element analysis. Engineering Fracture Mechanics, 2004, 71(8): 1165-1175.
[14] Brocks W, Cornec A, Scheider I. Computational aspects of nonlinear fracture mechanics. Milne I, Ritchie R O, Karihaloo B. Comprehensive Structural Integrity: Vol. 3. Oxford: Elsevier Ltd., 2003: 127-210.
[15] Dougherty D J, de Koning A U, Hiilberry B M. Modeling high crack growth rates under variable amplitude loading. Mitchell M R, Landgraf R W, editor. Advances in Fatigue Lifetime Predictive Techniques. ASTM STP 1122, 1992: 214-233. |