[1] Acikmese A B, Schar D P, Murray E A, et al. A convex guidance algorithm for formation reconfiguration//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, USA: AIAA, 2006: 1-17.
[2] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (Part I): guidance//Proceedings of the American Control Conference. Denver, USA: American Automatic Control Council, 2003: 1733-1739.
[3] Singh G, Hadaegh F Y. Collision avoidance guidance for formation-flying applications//AIAA Guidance Navigation, and Control Conference and Exhibition. Reston, USA: AIAA, 2001: 1-11.
[4] Sultan C, Seereram S, Mehra R K. Deep space formation flying spacecraft path planning[J]. The International Journal of Robotics Research, 2007, 26(4): 405-430.
[5] Richards A, Schouwenaars T, How J P, et al. Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 755-764.
[6] Cetin B, Bikdash M, Hadaegh F Y. Hybrid mixed-logical linear programming algorithm for collision-free optimal path planning[J]. IET Control Theory & Applications, 2007, 1(2): 522-531.
[7] 黄海滨, 马广富, 庄宇飞. 编队卫星队形重构防碰撞最优轨迹规划[J]. 航空学报, 2010, 31(9): 1818-1823. Huang Haibin, Ma Guangfu, Zhuang Yufei. Optimal trajectory planning for reconfiguration of satellite formation with collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1818-1823. (in Chinese)
[8] Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints//Proceedings of the American Control Conference. Portland, USA: American Automatic Control Council, 2005, 2: 889-894.
[9] Aoude G S, How J P, Garcia I M. Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers//Proceedings of the 20th International Symposium on Space Flight Dynamics. Piscataway, USA: IEEE, 2007.
[10] Wu B, Wang D, Poh E K, et al. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral approach[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1371-1381.
[11] Huntington G T, Rao A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 689-698.
[12] Zanon J, Campbell M E. Optimal planner for spacecraft formations in elliptical orbits[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 161-171.
[13] Scharf D P, Hadaegh F Y, Kang B H. On the validity of the double integrator approximation in deep space formation flying//Proceedings of the International Symposium Formation Flying Missions & Technologies. Pisca- taway, USA: IEEE, 2002.
[14] Rahman A, Mesbahi M, Hadaegh F Y. Optimal balanced- energy formation flying maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1395-1403.
[15] Lawson P R, Lay O P, Johnston K J, et al. Terrestrial planet finder interferometer science working group report. California, USA: NASA, 2007.
[16] Gong Q, Fahroo F, Ross I M. Spectral algorithm for pseudospectral methods in optimal control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 460-471.
[17] Ma G F, Huang H B, Zhuang Y F. Deep space formation reconfiguration using pseudospectral method//Proceedings of the 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. Harbin, China: IEEE, 2010: 498-501.
[18] Kennedy J, Eberhart R C, Particle swarm optimization//Proceedings of the IEEE International Conference on Neural Networks. Piscataway, USA: IEEE, 1995: 1942-1948. |