| [1]吴健发, 王宏伦, 黄宇.大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J].航空学报, 2020, 41(03):64-84[2]J.F. Wu,H-L. Wang,Y. Huang,Progress in research on solar unmanned aerial vehicle mission planning tech-nology in the context of large-scale spatiotemporal mis-sions[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(03):64-84[3]高显忠, 邓小龙, 王玉杰, 等.临近空间太阳能飞机能量最优飞行航迹规划方法展望[J].航空学报, 2023, 44(08):6-27[4]Gao Xianzhong, Deng Xiaolong, Wang Yujie, et al.Out-look on Energy Optimal Flight Path Planning Methods for Near Space Solar Aircraft[J].Acta Aeronautica et Astronautica Sinica, 2023, 44(08):6-27[5]A. Klesh and P. Kabamba.Energy-Optimal Path Planning for Solar-Powered Aircraft in Level Flight[J].AIAA Journal, 2007, :-[6]EDWARDS D J, KAHN A D, KELLY M, et al.Maxim-izing net power in circular turns for solar and autono-mous soaring aircraft[J].Journal of Aircraft, 2016, 53(5):1237-1247[7] A.Ailon, A path planning approach for unmanned solar-powered aerial vehicles[C]. 21thInternational Conference on Renewable Energies and Power Quality, July 2023, vol. 21[8]S.C. Spangelo,E[J].G. Gilbert, “Power Optimization of Solar-Powered Aircraft with Specified Closed Ground Tracks, ” Journal of Aircraft., 2013, 50(1):232-238[9]HUANG Y, CHEN J, WANG H,et al.A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J].Aerospace Science and Technology, 2019, (92):831-838[10] Martin, R.Abraham, Nathaniel S. Gates, Andrew Ning, and John D. Hedengren. “Dynamic Optimization of High-Altitude Solar Aircraft Trajectories under Station-Keeping Constraints.” Journal of Guidance, Control, and Dynamics 42, no. 3 (2019): 538–52.[11] Bolandhemmat, H., et al. (2019). Energy-Optimized Trajectory Planning for High Altitude Long Endurance (HALE) Aircraft. 18th European Control Conference (ECC), Naples, ITALY.[12] SACHS G, LENZ J, HOLZAPFELF.Unlimited endurance performance of solar UAVs with minimal or zero electri-cal energy torage[C]//AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2009:6013.[13]GAO X Z, HOU Z X, GUO Z, et al.Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace En-gineering, 2014, 228(13):2439-2451[14]王少奇, 马东立, 杨穆清, 等.高空太阳能无人机三维航迹优化[J].北京航空航天大学学报, 2019, 45(05):936-943[15]Wang Shaoqi, Ma Dongli, Yang Muqing, et al.Three dimensional trajectory optimization of high-altitude solar powered unmanned aerial vehicles[J].Journal of Bei-hang University, 2019, 45(05):936-943[16] J.Marriott, B. Tezel et al., 2020, " Trajectory Optimization of Solar-Powered High-Altitude Long Endurance Air-craft, " 2020 6th International Conference on Control, Au-tomation and Robotics (ICCAR).[17] Ni W J, Bi Y, WU D, MA X P.Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic[J]. Chinese Journal of Aeronautics, 2022, 35(10), 337-353.[18] SILVA P, BAN M, KRANJC N, et al.Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect[J]. Applied Energy, 2013, 101:151-160.[19] 刘多能.固定翼无人机动态滑翔机理与航迹优化研究[D].国防科学技术大学, 2016.[20]Liu Duoneng.Research on Dynamic Gliding Mecha-nism and Trajectory Optimization of Fixed Wing Drones [D]. National University of Defense Technology, 2016( in Chinese).[21] Richardson P L.Upwind Dynamic Soaring of Albatrosses and UAVs [J]. Progress in Oceanography, 2015, 130: 146~156.[22] Sachs G, Lesch K, Knoll A.Optimal Control for Maxi-mum Energy Extraction From Wind Shear [C] // AIAA Guidance, Navigation, and Control Conference, Wash-ington, D.C., 1989, AIAA Paper 1989-3490: 556~564.[23] Sachs G.Minimum Shear Wind Strength Required for Dynamic Soaring of Albatrosses [J]. IBIS, 2005, 147: 1~10.[24] Liu DN, Hou ZX, Flight modeling and simulation for dynamic soaring with small unmanned air vehicles [J].PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, vol.231(4), pp.589-605.[25]Gao X Z, Hou Z X, Guo Z, et al.The Influence of Wind Shear to the Performance of High-Altitude Solar-Powered Aircraft[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace En-gineering, 2013, 228(9):1562-1573[26] W.Zou, N. Li, F. An, K. Wang, and C. Dong, “A novel trajectories optimizing method for dynamic soaring based on deep reinforcement learning, ” Defence Technology, vol. 46, pp. 99–108, 2025, doi: https://doi.org/10.1016/j.dt.2024.12.007.[27] Bower G C, Flanzer T C, Krooy I M.Conceptual Design of a Small UAV for Continuous Flight Over the Ocean [C] // 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, VA, 20-22 September, 2011, AIAA Paper 2011-7072.[28]张云飞, 王宏伦, 张梦华, 等.基于强化学习的多能源动态滑翔航迹优化方法[J].西北工业大学学报, 2025, 43(01):128-139[29]Zhang Yunfei, Wang Honglun, Zhang Menghua, et al.Multi energy dynamic soaring trajectory optimization method based on reinforcement learning[J].Journal of Northwestern Polytechnical University, 2025, 43(01):128-139[30]刘思奇, 白俊强.结合动态滑翔技术的小型太阳能无人机飞行能量变化分析[J].西北工业大学学报, 2020, 38(01):48-57[31]Liu Siqi, Bai Junqiang.Analysis of Flight Energy Varia-tion of Small Solar UAVs Using Dynamic Soaring Technology[J].Journal of Northwestern Polytechnical University, 2020, 38(01):48-57[32] J.Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik, “Prediction-guided multi-objective reinforcement learning for continuous robot control, ” in 37th International Con-ference on Machine Learning, ICML 2020, Virtual, Online, 2020, pp. 10538–10547.[33] N.Kemper, M. Heider, D. Pietruschka, and J. Hahner, “A comparative study of multi-objective and neuroevolution-ary-based reinforcement learning algorithms for optimiz-ing electric vehicle charging and load management, ” Ap-plied Energy, vol. 391, 2025, [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2025.125890[34] Bencatel R, Sousa T J D, Girard A.Atmospheric Flow Field Models Applicable for Aircraft Endurance Exten-sion [J]. Progress in Aerospace Sciences, 2013, 61: 1~25.[35] B.Etkin, Dynamics of Atmospheric Flight. Chelmsford, MA, USA: Courier Corporation, 2012.[36] B.Keidel, “Auslegung und Simulation von Hoch-fliegenden Dauerhaft Stationierbaren Solardrohnen, ” Ph.D. München: Technischen Universit?t München Fakult?t für Maschinenwesen, 2000.[37] 昌敏.广纬度域驻留太阳能飞机设计及其动力学特性研究[D].中国西安:西北工业大学, 2013:12-15.[38]Chang M.Design and dynamic characteristics of a wide latitude resident solar powered aircraft [D]. Xi' an, China: Northwestern Polytechnical University, 2013:12-15 (in Chinese).[39] M.Asselin. An Introduction to Aircraft Performance[M]. AIAA: Reston, VA, USA, 1997.[40] H.Lu, D. Herman, and Y. Yu. Multi-objective reinforce-ment learning: convexity, stationarity and pareto optimali-ty[C]//11th International Conference on Learning Repre-sentations, ICLR 2023, Kigali, Rwanda, 2023[41] F.Felten, E.-G. Talbi, and G. Danoy. Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework[J/OL]. arXiv, 2023. Available: http://dx.doi.org/10.48550/arXiv.2311.12495[42] Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, et al.Soft Actor-Critic Algorithms and Applications[J/OL]. ArXiv, 2018.https://doi.org/10.48550/arXiv.1812.05905[43] Z.-Y. Xi et al. Energy-Optimized Trajectory Planning for Solar-Powered Aircraft in a Wind Field Using Rein-forcement Learning[J]. IEEE Access, 2022, 10: 87715-87732.[44]刘思奇, 白俊强.基于六自由度模型的高空动态滑翔探究[J].西北工业大学学报, 2021, 39(04):703-711[45]Liu Siqi, Bai Junqiang Exploration of high-altitude dy-namic gliding based on a six degree of freedom model [J].Journal of Northwestern Polytechnical University, 2021, 39 (04): 703-711[46] S.Guo and Z. Xiaohui, “Multi-agent deep reinforcement learning based transmission latency minimization for de-lay-sensitive cognitive satellite UAV networks, ” IEEE Trans. Commun., vol. 71, no. 1, pp. 131–144, 2022.[47] S.Park, J. Deyst, and J. P. How, A new nonlinear guid-ance logic for trajectory tracking[J/OL]. AIAA Guidance, Navigation, and Control Conference, Providence, RI, United states, 2004, pp. 941–956. http://dx.doi.org/10.2514/6.2004-4900[48] K.Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017. |