航空学报 > 2025, Vol. 46 Issue (4): 430777-430777   doi: 10.7527/S1000-6893.2024.30777

航空齿轮胶合承载能力试验与材料-工艺-滑油抗胶合设计方法

陈进筱1, 魏沛堂1(), 李炎军2, 刘怀举1, 朱才朝1   

  1. 1.重庆大学 高端装备机械传动全国重点实验室,重庆 400044
    2.中国航发四川燃气涡轮研究院,成都 610500
  • 收稿日期:2024-06-03 修回日期:2024-06-26 接受日期:2024-07-24 出版日期:2024-08-27 发布日期:2024-08-26
  • 通讯作者: 魏沛堂 E-mail:peitangwei@cqu.edu.cn
  • 基金资助:
    国家自然科学基金(U2141247)

Experiment and anti-scuffing design for aviation gear scuffing based on material, surface treatment and lubricant combinations

Jinxiao CHEN1, Peitang WEI1(), Yanjun LI2, Huaiju LIU1, Caichao ZHU1   

  1. 1.Chongqing University,The State Key Laboratory of Mechanical Transmissions,Chongqing 400044,China
    2.AECC Sichuan Gas Turbine Establishment,Chengdu 610500,China
  • Received:2024-06-03 Revised:2024-06-26 Accepted:2024-07-24 Online:2024-08-27 Published:2024-08-26
  • Contact: Peitang WEI E-mail:peitangwei@cqu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U2141247)

摘要:

高温、高速、重载下发生的齿轮胶合会严重影响航空发动机等装备的服役性能。目前面向我国材料-工艺-滑油环境的航空齿轮胶合承载能力试验基础数据缺失,综合考虑材料-工艺-滑油组合的抗胶合主动设计方法不足。开展了21组不同材料-工艺-滑油组合的齿轮胶合承载能力试验,包含9310、18Cr2Ni4WA、16Cr3NiWMoVNbE等材料,磨削、喷丸、微粒喷丸、二次喷丸、光整、二次喷丸+光整等工艺及4450、555、4106、4010、2197、387、560、Mobil jet oil Ⅱ等润滑油。基于PVT极限(齿轮接触压力P、滑动速度V、滑油温度T)计算了不同组合下的齿轮胶合承载能力,探究了材料、工艺、润滑等因素对齿轮胶合承载能力的影响规律。结果表明16Cr3NiWMoVNbE光整齿轮与555滑油组合具有最高的抗胶合性能,其胶合承载能力达39 721 MPa·(m/s)0.51·℃0.45。添加剂类型、润滑剂黏度、表面粗糙度为影响齿轮胶合承载能力的3个主要因素,其对胶合承载能力的贡献度分别占比28.7%、23.6%、14.9%。通过OLS(Ordinary Least Squares)线性回归方法拟合了航空齿轮胶合承载能力预测公式,与试验结果对比的平均误差仅为4.99%,为齿轮抗胶合主动设计提供了理论支撑。

关键词: 航空齿轮, 胶合试验, PVT极限, 抗胶合设计, 表面处理

Abstract:

Gear scuffing occurring under high-temperature, high-speed, and heavy-load can significantly impair the performance of aviation engines. However, there is a lack of test data on the gear scuffing load-carrying capacity, and insufficient anti-scuffing design under the combined influences of materials, surface treatment and lubricants. This study investigates the effects of different combinations of materials (9310, 18Cr2Ni4WA, 16Cr3NiWMoVNbE), surface treatments (grinding, shot peening, Micro-shot peening, dual shot peening, barrel finishing, dual shot peening + barrel finishing) and lubricants (4450, 555, 4106, 4010, 2197, 387, 560, Mobil jet oil Ⅱ) on the scuffing load-carrying capacity, and proposes an evaluation method based on the PVT limit (involving gear contact pressure P, sliding velocity V, and lubricant temperature T). The results indicate that the tribological system composed of 16Cr3NiWMoVNbE, barrel finishing treatment, and 555 lubricant (containing high-performance EP additives) exhibits relatively superior anti-scuffing performance, and its PVT limit is 39 721 MPa·(m/s)0.51·℃0.45. Additive type, lubricant viscosity, and surface roughness are identified as three main factors affecting gear scuffing within the parameter framework, accounting for 28.7%, 23.6%, and 14.9%, respectively. An anti-scuffing design formula was fitted using the Ordinary Least-Squares (OLS) model, with an average error of only 4.99% compared to experimental results, providing a theoretical support for gear anti-scuffing design.

Key words: aviation gear, scuffing test, PVT limit, anti-scuffing design, surface treatment

中图分类号: