1 |
SHAFAGHAT S, NOORIAN M A, IRANI S. Nonlinear aeroelastic analysis of a HALE aircraft with flexible components[J]. Aerospace Science and Technology, 2022, 127: 107663.
|
2 |
JACOB J, SMITH S. Design of HALE aircraft using inflatable wings[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
|
3 |
冯晓宇,杨勋平,祝中强,等.RQ-180隐身长航时无人机设计特征分析[J].国际航空, 2022(5):19-24.
|
|
FENG X Y, YANG X P, ZHU Z Q, et al.Decoding RQ-180 stealth long endurance UAV[J]. International Aviation,2022(5):19-24 (in Chinese).
|
4 |
李怡勇, 沈怀荣. 发展高空长航时无人机初探[J]. 航空兵器, 2005, 12(6): 58-61.
|
|
LI Y Y, SHEN H R. Discuss on developing high altitude long-endurance UAV[J]. Aero Weaponry, 2005, 12(6): 58-61 (in Chinese).
|
5 |
LIM J, CHOI S, SHIN S, et al. Wing design optimization of a solar-HALE aircraft[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(3): 219-231.
|
6 |
JAMSHED W, ALANAZI A K, ISA S S P M, et al. Thermal efficiency enhancement of solar aircraft by utilizing unsteady hybrid nanofluid: A single-phase optimized entropy analysis[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 101898.
|
7 |
WU J F, WANG H L, HUANG Y, et al. Solar-powered aircraft endurance map[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3): 687-694.
|
8 |
席涵宇, 王正平, 张晓辉, 等. “双碳” 战略下绿色能源无人机的发展机遇和挑战[J]. 无人系统技术, 2023, 6(1): 14-25.
|
|
XI H Y, WANG Z P, ZHANG X H, et al. Opportunities and challenges for the development of UAV technology under the “double carbon” strategy[J]. Unmanned Systems Technology, 2023, 6(1): 14-25 (in Chinese).
|
9 |
李学龙. 无人机续航能力[J]. 中国科学: 信息科学, 2023, 53(7): 1233-1261.
|
|
LI X L. Endurance of unmanned aerial vehicles[J]. Scientia Sinica (Informationis), 2023, 53(7): 1233-1261 (in Chinese).
|
10 |
ANAND P, PANDIARAJAN R, RAJU P. Wireless power transmission to UAV using LASER beaming[J]. International Journal of Mechanical Engineering and Research, 2015,5(1):137-142.
|
11 |
GAVAN J, TAPUCHI S. Microwave wireless-power transmission to high-altitude-platform systems[J]. URSI Radio Science Bulletin, 2010, 2010(334): 25-42.
|
12 |
EAST T W R. A self-steering array for the SHARP microwave-powered aircraft[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12): 1565-1567.
|
13 |
FUJINO Y, FUJITA M, ITO T. Driving test of a small dc motor with a rectenna array and milax flight experiment[J].Quarterly Report of Communication Research Laboratory, 1998, 44(3):113-120.
|
14 |
李振宇, 张建德, 黄秀军. 空间太阳能电站的激光无线能量传输技术研究[J]. 航天器工程, 2015, 24(1): 31-37.
|
|
LI Z Y, ZHANG J D, HUANG X J. Laser wireless power transmission technology for solar power satellite[J]. Spacecraft Engineering, 2015, 24(1): 31-37 (in Chinese).
|
15 |
毛磊, 姚保寅, 周洁, 等. 微波能量传输技术发展及军事应用简析[J]. 军事文摘, 2022(23): 58-62.
|
|
MAO L, YAO B Y, ZHOU J, et al. Development and military application of microwave energy transmission technology[J]. Military Digest, 2022(23): 58-62 (in Chinese).
|
16 |
搜狐网. 无人机飞行中充电新技术比激光充电效果更好[EB/OL]. (2021-12-17)[2023-12-07]..
|
|
SOHU. New charging technologies for UAVs during flight have better charging effects than laser charging[EB/OL].(2021-12-17)[2023-12-07]. (in Chinese).
|
17 |
HOQUE M U, KUMAR D, AUDET Y, et al. Design and analysis of a 35 GHz rectenna system for wireless power transfer to an unmanned air vehicle[J]. Energies, 2022, 15(1): 320.
|
18 |
陈巍, 柳青, 张斌. 一种基于微波无线传能的气体膨胀动力技术在航天运输系统的应用探索[C]∥ 中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议论文集, 2016: 548-552.
|
|
CHEN W, LIU Q, ZHANG B. Exploration of application of gas expansion power technology based on microwave wireless energy transmission in aerospace transportation systems[C]∥Proceeding of 37th Technical Exchange Conference and the 1st Joint Conference on Aerospace Power of China Aerospace Third Professional Information Network, 2016:548-552 (in Chinese).
|
19 |
宋元明. 面向无人机供电的微波无线传能链路建模与多目标优化研究[D]. 长沙: 国防科技大学, 2020.
|
|
SONG Y M. Research on modeling and multi-objective optimization of microwave wireless energy transmission link for uav power supply[D].Changsha: National University of Defense Technology, 2020 (in Chinese).
|
20 |
王鹏杰. 基于无线能量传输的无人机协作通信网络性能优化[D]. 北京: 北京邮电大学, 2021.
|
|
WANG P J. Performance optimization of UAV cooperative communication network based on wireless power transfer technique[D].Beijing: Beijing University of Posts and Telecommunications, 2021 (in Chinese).
|
21 |
闫禹衡. 用于飞行器的超轻薄整流天线设计[D]. 成都: 电子科技大学, 2022.
|
|
YAN Y H. Design of ultra light and thin rectenna for aircraft[D]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese).
|
22 |
宋德俊. 二极管整流电路直流合成技术及高功率晶体管整流电路设计研究[D]. 西安: 西安电子科技大学, 2022.
|
|
SONG D J. Research on DC combining technology of diode rectifier circuits and design of high power transistor rectifier circuit[D]. Xi’an: Xidian University, 2022 (in Chinese).
|
23 |
MIWATASHI K, HIRAKAWA T, SHINOHARA N, et al. Development of high-power charge pump rectifier for microwave wireless power transmission[J]. IEEE Journal of Microwaves, 2022, 2(4): 711-719.
|
24 |
YI X J, CHEN Q, HAO S J, et al. An efficient 5.8 GHz microwave wireless power transmission system[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(5): e23094.
|
25 |
XIAO D P, HE J, ZHANG H Q, et al. Design of multi-channel AlGaN/GaN Schottky diode for improving rectification efficiency in microwave power transmission[J]. Micro and Nanostructures, 2023, 174: 207468.
|
26 |
段宝岩. 基于微波无线传能与全向扫描天线的SSPS: OMEGA-2.0光机电集成设计[J]. 中国科学: 技术科学, 2023, 53(1): 139-144.
|
|
DUAN B Y. Optomechatronics OMEGA design project of SSPS with MWPT and omnidirectional scanning antenna[J]. Scientia Sinica (Technologica), 2023, 53(1): 139-144 (in Chinese).
|