航空学报 > 2024, Vol. 45 Issue (16): 229779-229779   doi: 10.7527/S1000-6893.2023.29779

固体力学与飞行器总体设计

湿滑道面飞机牵引滑行系统纵向动力学建模与制动性能

祝恒佳1,2,3, 齐凯2,4, 王立文2,5, 张威2,3,5()   

  1. 1.中国民航大学 航空工程学院,天津 300300
    2.中国民航航空地面特种设备研究基地,天津 300300
    3.民航智慧机场理论与系统重点实验室,天津 300300
    4.中国民航大学 安全科学与工程学院,天津 300300
    5.中国民航大学 科技创新研究院,天津 300300
  • 收稿日期:2023-10-30 修回日期:2023-12-11 接受日期:2024-02-05 出版日期:2024-03-14 发布日期:2024-03-14
  • 通讯作者: 张威 E-mail:weizhang@cauc.edu.cn
  • 基金资助:
    国家自然科学基金(12002367);中央高校基本科研业务费(3122022066);中国民航大学实验技术创新基金(2022CXJJ89)

Longitudinal dynamics modeling and braking performance of towbarless aircraft taxiing system on wet roads

Hengjia ZHU1,2,3, Kai QI2,4, Liwen WANG2,5, Wei ZHANG2,3,5()   

  1. 1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Aviation Special Ground Equipment Research Base,CAAC,Tianjin 300300,China
    3.Key Laboratory of Smart Airport Theory and System,CAAC,Tianjin 300300,China
    4.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    5.Research Institute of Science and Technology,Civil Aviation University of China,Tianjin 300300,China
  • Received:2023-10-30 Revised:2023-12-11 Accepted:2024-02-05 Online:2024-03-14 Published:2024-03-14
  • Contact: Wei ZHANG E-mail:weizhang@cauc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12002367);Fundamental Research Funds for the Central Universities(3122022066);Experimental Technology Innovation Fund of Civil Aviation University of China(2022CXJJ89)

摘要:

飞机地面作业可分为低速(小于6 kn)、中速(6~14 kn)、高速(大于14 kn)3类(1 kn=1.852 km/h),相比于传统的低速飞机牵引作业,新一代无杆飞机牵引滑行模式下牵引速度可达到40 km/h,道面湿滑对高速飞机牵引滑行系统制动性能的影响不可忽视。采用伪流动动压轴承作用等效反映轮胎-水膜-道面相互作用,结合任意压力分布函数提出LuGre轮胎滑水动力学模型。针对AM210无杆飞机牵引车轮胎开展湿路面附着性能试验,对LuGre轮胎滑水动力学模型进行参数辨识。基于MATLAB/Simulink和Adams/View建立LuGre轮胎滑水动力学模型和无杆牵引滑行系统的动力学联合仿真模型。采用模糊PID最优滑移率控制方法并考虑道面振动激励,对比研究了湿滑和干燥道面下飞机牵引系统的制动性能。结果表明,湿滑道面轮胎动载荷小于干燥道面,轮胎抓地性能随水膜厚度增大而降低,在40 km/h的初始制动速度下A级、C级1 mm水膜厚度道面的制动距离比干燥道面分别增加了30.9%、31.3%,对应工况下1 mm水膜厚度道面的制动距离比0.5 mm水膜厚度道面分别增加了2.7%、2.5%。研究结果可为湿滑道面工况下飞机牵引滑行作业中的制动安全预测提供理论基础。

关键词: 无杆飞机牵引滑行系统, 无杆飞机牵引车, 湿滑道面, 轮胎动力学模型, 制动动力学

Abstract:

Aircraft apron ground operation involves three cases: low-speed (less than 6 kn), middle-speed (6–14 kn), and high-speed (more than 14 kn)(1 kn=1.852 km/h). Compared to the traditional low-speed aircraft towing operation, the traction velocity in the new-generation towbarless aircraft taxiing mode can reach 40 km/h. In this case, wet roads have a significant influence on the braking performance of the Towbarless Aircraft Taxiing System (TLATS). The “pseudo” flow dynamic pressure bearing effect is used as equivalent interaction among the tire, water film and road, and an advanced LuGre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The wet road tire adhesion experiments are conducted for a specific tire of the AM210 Towbarless Towing Vehicle (TLTV), and the LuGre tire hydrodynamic model parameters are identified based on the experimental results. A co-simulation dynamic model of the LuGre tire hydrodynamic model in MATLAB/Simulink and the TLATS in Adams/View is established. Employing the same fuzzy PID optimal slip rate control method and considering the rough road vibration excitation, the braking performance of the TLATS under wet road conditions with those under dry road conditions is compared. Results show that the vertical tire dynamic load under wet road conditions is smaller than that under dry road conditions, and the tire grip performance decreases with increase in the water film thickness. The braking distances for class A and class C roads with 1 mm water film thickness increase by 30.9% and 31.3%, respectively, compared to that under dry rough roads with an initial braking speed of 40 km/h. The braking distances of 1 mm water film thickness increase by 2.7% and 2.5%, respectively compared to that of 0.5 mm water film thickness under corresponding working conditions. The results could provide a theoretical basis for accurate prediction of safe braking distances on wet roads in aircraft towing operations.

Key words: Towbarless Aircraft Taxiing System (TLATS), Towbarless Towing Vechicle (TLTV), wet road, tire dynamic model, braking dynamics

中图分类号: