1 |
GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123.
|
2 |
解江, 牟浩蕾, 冯振宇. 运输类飞机适坠性合格审定导论[M]. 北京:中国民航出版社, 2022: 1-102.
|
|
XIE J, MOU H L, FENG Z Y. Introduction to crashworthiness certification of transport aircraft[M]. Beijing: China Civil Aviation Press, 2022:1-102 (in Chinese).
|
3 |
牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39.
|
|
MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39 (in Chinese).
|
4 |
WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing: 19840002543 [R]. Washington,D.C.: NASA Technical Memorandum, 1983.
|
5 |
WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells: NASA TM-85706[R]. Washington,D.C.: NASA Technical Memorandum, 1983.
|
6 |
ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard: 0148-7191 [R]. Washington,D.C.: FAA, 2000.
|
7 |
JACKSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections: DOT/FAA/AR-02/62[R]. Washington,D.C.: FAA, 2002.
|
8 |
MOSTAFA R. Virtual test & simulation [C]∥Los Angeles, Engineering, Operations & Technology, AIAA Complex Aerospace Systems Exchange.Reston:AIAA,2013.
|
9 |
JACKSON K E, LITTELL J D, Annett M S, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections: NASA/TM-2018-219807 [R]. Washington,D.C.: NASA, 2018.,
|
10 |
LITTELL J D. A summary of results from two full-scale fokker F28 fuselage section drop tests: 20180004391 [R]. Washington,D.C.: NASA Langley Research Center, 2018.
|
11 |
Federal Aviation Administration. Transport airplane cabin interiors crashworthiness handbook:AC 25-17A [S]. Washington D C: FAA, 2009.
|
12 |
Federal Aviation Administration. Injury criteria for human exposure to impact: AC 21-22 [S]. Washington,D.C.: FAA, 1985.
|
13 |
LE PAGE F, CARCIENTA R. A320 fuselage section vertical drop test, Part 2: Test result: S955776/2[R]. Toulouse: CEAT, 1995.
|
14 |
GRANSDEN D I, ALDERLIESTEN R. Development of a finite element model for comparing metal and composite fuselage section drop testing[J]. International Journal of Crashworthiness, 2017, 22(4): 401-414.
|
15 |
CLIMENT H, AERONÁUTICAS C. Non-linear response of metallic and composite aeronautical fuselage structures under crash loads and comparison with full scale test[C]∥European Congress on Computational Methods in Applied Sciences and Engineering. Athens:National Technical University of Athens, 2000: 11-14.
|
16 |
KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]∥SAE Technical Paper Series. Warrendale States: SAE International, 2002: 01-2997.
|
17 |
KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 2003: 531-540.
|
18 |
刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140.
|
|
LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese).
|
19 |
张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验[J]. 航空学报, 2022, 43(6): 526234.
|
|
ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234 (in Chinese).
|
20 |
任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2): 271-276.
|
|
REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276 (in Chinese).
|
21 |
朱鲜飞, 冯蕴雯, 薛小锋, 等. 基于乘员响应的民机典型机身段结构适坠性分析与评估[J]. 机械强度, 2020, 42(3): 617-630.
|
|
ZHU X F, FENG Y W, XUE X F, et al. Analysis and evaluation fuselage section’s crashworthiness of typical civil airplane based on passenger response[J]. Journal of Mechanical Strength, 2020, 42(3): 617-630 (in Chinese).
|
22 |
牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析[J]. 航空学报, 2023, 44(9): 232-246.
|
|
MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 232-246 (in Chinese).
|
23 |
解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022, 43(6): 525890.
|
|
XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890 (in Chinese).
|
24 |
Transport Aircraft Crashworthiness and Ditching Working Group. Transport Aircraft Crashworthiness and Ditching Working Group Report to FAA[R]. Washington, D.C.: FAA, 2018.
|
25 |
LANKARANI H M. Current issues regarding aircraft crash injury protection[M]∥Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection. Dordrecht: Springer Netherlands, 1997: 579-612.
|
26 |
Federal Aviation Administration. Emergency landing dynamic conditions: FAR25.562 [S]. Washington,D.C.: Federal Aviation Administration, 1988.
|
27 |
Federal Aviation Administration. Technical standard order-rotorcraft, transport airplane, and small airplane seating systems: TSO-C127b [S]. Washington,D.C.: Federal Aviation Administration, 2014.
|
28 |
中国民用航空局. 中国民用航空规章: 第25部-运输类飞机适航标准:CCAR-25 [S]. 北京: 中国民用航空局, 2011.
|
|
Civil Aviation Administration of China. China civil aviation regulation:25-airworthiness standard of transport aircraft: CCAR-25 [S]. Beijing: Civil Administration of China, 2011 (in Chinese).
|
29 |
EIBAND A. Human tolerance to rapidly applied accelerations: A summary of the literature: NASA Memorandum 5-19-59E[R]. Cleveland: NASA Lewis Research Center, 1959.
|
30 |
STECH E, PAYNE P. Dynamic models of the human body: AMRL-TR-66-l57[R]. Dayton: Aerospace Medical Research Laboratory, Wright-Patterson AFB, 1969.
|
31 |
CHANDLER R. Human injury criteria relative to civil aircraft seat and restraint systems: SAE Paper 851847[R]. Warrendale: SAE International, 1985.
|
32 |
BRINKLEY J, SHAFFER J. Dynamic simulation techniques for the design of escape systems: current applications and future Air Force requirements: AMRL-TR-71-29[R]. State of Ohio: USAF Aerospace Research Laboratories, 197l.
|