[1] 崔乃刚, 吴 荣, 韦常柱,等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报, 2020, 52(4): 15-24.CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning [J]. Journal of Har-bin Institute of Technology,2020,52(4):15-24 (in Chi-nese).[2] 崔乃刚, 吴 荣, 韦常柱,等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2): 27-42.CUI N G, WU R, WEI C Z, et al. Development and Key Technologies of Vertical Takeoff Vertical Landing Re-usable Launch Vehicle [J]. Astronautical Systems Engi-neering Technology, 2018, 2(2): 27-42 (in Chinese).[3] 徐大富,张哲,吴克,等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 中国科学, 2016, 61(32): 3453-3463.XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launch vehicle[J]. Chin Sci Bull, 2016, 61: 3453–3463. (in Chinese).[4] BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive Fault Tolerant Control Design for a Model of DC-X Dynamics [C]// American Control Conference. Washington: Scientific Systems Company, 2008: 1046-1051. [5] 张亮,黄盘兴,徐大富,等. 垂直起降火箭垂直返回段自适应容错控制算法[J]. 战术导弹技术, 2015, 2:63-69.ZHANG L, HUANG P X, XU D F, et al. VTVL Rocket Fault Control for its Return Trajectory[J]. Tactical Mis-sile Technology, 2015, 2:63-69. (in Chinese).[6] WANG F, HUA C C, ZONG Q. Attitude control of reus-able launch vehicle in reentry phase with input con-straint via robust adaptive backstepping control [J]. In-ternational Journal of Adaptive Control and Signal Pro-cessing, 2015, 29(10):1308-1327.[7] 崔乃刚, 张亮, 韦常柱,等. 可重复使用运载器大姿态机动自抗扰控制[J].中国惯性技术学报, 2017, 25(3): 387-394.CUI N G, ZHANG L, WEI C Z, et al. Active disturb-ance rejection control for reusable launch vehicle with large attitude maneuver [J]. Journal of Chinese Inertial Technology, 2017, 25(3): 387-394. (in Chinese).[8] 陈佳晔, 王紫扬, 陈 益, 等. 基于迭代学习干扰观测器的 RLV 容错控制方法[J].中国惯性技术学报, 2021, 29(6): 832-840.CHEN J Y, WANG Z Y, CHEN Y, et al. RLV fault-tolerant control method based on iterative learning dis-turbance observer [J]. Journal of Chinese Inertial Tech-nology, 2021, 29(6): 832-840. (in Chinese).[9] 刘航. 运载火箭第一级回收控制研究[D]. 西安: 西安电子科技大学, 2021.LIU H. Research on first stage recovery control of launch vehicle[D]. Xian: Xidian University, 2021 (in Chinese).[10] VIGNESH S A, APM I H, ANASWARA A K, et al. Trajectory Planning and Soft Landing of RLV Using Non-Linear Model Predictive Control [C]// Seventh In-dian Control Conference, 2021:87-92.[11] XING G Q, PARVEZ S A. Nonlinear attitude state tracking control for spacecraft[J], Journal of Guidance, Control, and Dynamics, 2001, 24(3): 624-626.[12] PEI J,PUETZ A, DUARTE C, et al. Suppression of nonlinear rotary slosh dynamics using SLS adaptive augmenting control system demonstration on a quad-copter testbed[C]// AIAA SciTech 2019 Forum. Reston: South Dakota State University, 2019: 1-10.[13] SHTESSEL Y, HALL C, BAEV S, et al. Flexible modes control using sliding mode observers: Applica-tion to Ares I[C]// AIAA Guidance, Navigation, and Control Conference. Toronto: University of Alabama in Huntsville, 2010: 1-10.[14] 钱默抒, 熊克, 王海洋. 重复使用运载火箭精确回收滑模动态面控制[J]. 宇航学报, 2018, 39(8): 879-888.QIAN M S, XIONG K, WANG H Y. Sliding mode dy-namic surface control in precise recovery for reusable launch vehicle [J]. Journal of Astronautics, 2018, 39(8): 879-888. (in Chinese).[15] 李晓栋, 廖宇新, 廖俊, 等. 可重复使用运载火箭一子级垂直回收有限时间滑模控制[J]. 中南大学学报(自然科学版), 2020, 51(4): 979-988.LI X D, LIAO Y X, LIAO J, et al. Finite-time sliding mode control for vertical recovery of the first-stage of reusable rocket [J]. Journal of Central South University (Science and Technology), 2020, 51(4): 979-988. (in Chinese).[16] 李晓栋, 廖宇新,李珺. 基于MFTESO的可重复使用运载火箭多变量有限时间控制方法[J]. 控制与信息技术, 2019, 4:12-17.LI X D, LIAO Y X, LI J. MFTESO Based Multivaria-ble Finite-time Control for Reusable Rocket [J]. Control and Information Technology, 2019, 4:12-17. (in Chi-nese).[17] 杨少波. 垂直起降火箭末段定点着陆的制导控制方法研究[D]. 西安: 西安电子科技大学, 2020.YANG S B. Research on guidance and control method of fixed point landing of vertical takeoff vertical land-ing rocket in the last stage[D]. Xian: Xidian University, 2021 (in Chinese).[18] JU X Z, WEI C Z, Zhang L, et al. Semi-globally smooth control for VTVL reusable launch vehicle un-der actuator faults and attitude constraints[J]. Acta As-tronautica, 2022, 191: 528-546.[19] ZHANG L, WEI C Z, WU R, et al. Fixed-time extend-ed state observer based non-singular fast terminal slid-ing mode control for a VTVL reusable launch vehicle [J]. Aerospace Science and Technology, 2018, 82–83:70-79.[20] ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle [J]. Acta Astronautica, 2019,159: 362-370.[21] JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints [J]. ISA Transactions, 2022. https://doi.org/10.1016/j.isatra.2022.02.003.[22] ZHANG L, JING L, YE L H, et al. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle[J], Aircraft Engineering and Aerospace Technology, 2021. https://doi.org/10.1108/AEAT-11-2020-0253. [23] 宋征宇,蔡巧言,韩鹏鑫,等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11):52505.SONG Z Y, CAI Q Y, HAN P X, et al. Review of guid-ance and control technologies for reusable launch vehi-cles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 52505 (in Chinese).[24] 韦常柱, 琚啸哲,徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782.WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing re-usable launching vehicle[J]. Acta Aeronautica et Astro-nautica Sinica, 2019, 40(7): 322782 (in Chinese).[25] WU R, WEI C Z, YANG F, et al. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems[J]. IET Control Theory and Applica-tions, 2018, 12(18):2459-2467.[26] ZHANG L, JU X Z, CUI N G. Ascent control of heavy-lift launch vehicle with guaranteed predefined performance[J], Aerospace Science and Technology 2021, 110: 106511.[27] SANCHEZ-TORRES J D, DEFOORT M, MUNOZ-VAZQUEZ A J. Prede?ned-time stabilization of a class of nonholonomic systems[J], International Journal of Control. 2020, 93(12): 2941-2948.[28] XU B , JI S , ZHANG C , et al. Linear-extended-state-observer-based prescribed performance control for tra-jectory tracking of a robotic manipulator[J]. Industrial Robot, 2021. https://doi.org/10.1108/IR-07-2020-0150.[29] 李杨, 刘昶, 王吉飞,等. 垂直起降运载火箭总体方案研究[J]. 南京航空航天大学学报, 2019, 51(S):1-6.LI Y, LIU C, WANG J F, et al. General Design study of Vertical takeoff and Vertical Landing vehicle[J], Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(S):1-6. (in Chinese).[30] ZHANG L, WU R, WEI C Z, et al. Quaternion-Based Reusable Launch Vehicle Composite Attitude Control via Active Disturbance Rejection Control and Sliding Mode Approach[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xi-men: Harbin Institute of Technology, 2017: 1-20.[31] ESTEBAN J R, ALDO J M, SANCHEZ-TORRES J D, A Lyapunov-like Characterization of Prede?ned-Time Stability[J], IEEE Transactions on Automatic Control, 2020, 65(11): 4922-4927.[32] ALDO J M, SANCHEZ-TORRES J D, ESTEBAN J R, et al. Prede?ned-time robust stabilization of robotic manipulators[J], IEEE/ASME Transactions on Mecha-tronics, 2019, 24(3): 1033-1040. |