[1] CHEN G, TENG Q Z. Robust infrared target tracking algorithm based on Siamese network[J]. Computer Applications and Software, 2022, 39(1): 195-199 (in Chinese). 陈果, 滕奇志. 基于孪生网络的鲁棒红外目标跟踪算法[J]. 计算机应用与软件, 2022, 39(1): 195-199. [2] ZHANG X N, GUO Q L, LIU S Y. Analysis and prospect of deep learning technology and its fault diagnosis application[J]. Journal of Xi'an Jiaotong University, 2020, 54(12): 1-13 (in Chinese). 张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13. [3] WEN L, LI X Y, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. [4] SHAO S Y, MCALEER S, YAN R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455. [5] AKERET J, CHANG C, LUCCHI A, et al. Radio frequency interference mitigation using deep convolutional neural networks[J]. Astronomy and Computing, 2017, 18: 35-39. [6] ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7): 114-125 (in Chinese). 周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40(7): 114-125. [7] LIU H, ZHOU J Z, ZHENG Y, et al. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J]. ISA Transactions, 2018, 77: 167-178. [8] [9] CHI Y W, YANG S X, JIAO W D. A multi-label fault classification method for rolling bearing based on LSTM-RNN[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 563-571, 629 (in Chinese). 池永为, 杨世锡, 焦卫东. 基于LSTM-RNN的滚动轴承故障多标签分类方法[J]. 振动 测试与诊断, 2020, 40(3): 563-571, 629. [10] [11] LIU X N, ZHOU Y, ZHAO J Q, et al. Siamese convolutional neural networks for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1200-1204. [12] [13] DANG Y, ZHANG J X, DENG K Z, et al. Study on the evaluation of land cover classification using remote sensing images based on AlexNet[J]. Journal of Geo-Information Science, 2017, 19(11): 1530-1537 (in Chinese). 党宇, 张继贤, 邓喀中, 等. 基于深度学习AlexNet的遥感影像地表覆盖分类评价研究[J]. 地球信息科学学报, 2017, 19(11): 1530-1537. [14] ZHU B C, ZHANG M F, YU S, et al. Research on vehicle classification method based on improved AlexNet[J]. Journal of Physics: Conference Series, 2021, 1955(1): 012060. [15] LIAO L M, ZHANG W. Batch mixed training traffic sign recognition based on improved VGG16 network[J]. Electronic Science and Technology, 2021, 34(8): 8-13 (in Chinese). 廖璐明, 张伟. 基于改进VGG16网络的混合批量训练交通标志识别[J]. 电子科技, 2021, 34(8): 8-13. [16] PARDEDE J, SITOHANG B, AKBAR S, et al. Implementation of transfer learning using VGG16 on fruit ripeness detection[J]. International Journal of Intelligent Systems and Applications, 2021, 13(2): 52-61. [17] SONG F Y, WU L M, ZHENG G Z, et al. Optimization of structural pruning based on MobileNetV3[J]. Automation & Information Engineering, 2019, 40(6): 20-25 (in Chinese). 宋非洋, 吴黎明, 郑耿哲, 等. 基于MobileNetV3的结构性剪枝优化[J]. 自动化与信息工程, 2019, 40(6): 20-25. [18] BAI T B, GAO J L, YANG J W, et al. A study on railway surface defects detection based on machine vision[J]. Entropy, 2021, 23(11): 1437. [19] CHANG J, GUAN S Q, SHI H Y, et al. Strip defect classification based on improved generative adversarial networks and MobileNetV3[J]. Laser & Optoelectronics Progress, 2021, 58(4): 221-226 (in Chinese). 常江, 管声启, 师红宇, 等. 基于改进生成对抗网络和MobileNetV3的带钢缺陷分类[J]. 激光与光电子学进展, 2021, 58(4): 221-226. [20] LI Z M. Practice of gesture recognition based on Resnet50[J]. Journal of Physics: Conference Series, 2020, 1574(1): 012154. |