[1] BRANDSTEIN M S, ADCOCK J E, SILVERMAN H F. A localization-error-based method for microphone-array design[C]//1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings. Piscataway:IEEE Press, 1996:901-904. [2] POURAZARM P, MODARRES-SADEGHI Y, LACKNER M A. Flow-induced instability of wind turbine blades:AIAA-2014-1219[R].Reston:AIAA, 2014. [3] DVRRWÄCHTER L, KEBLER M, KRÄMER E. Numerical assessment of open-rotor noise shielding with a coupled approach[J].AIAA Journal, 2019, 57(5):1930-1940. [4] ALLEN C S, BLAKE W K, DOUGHERTY R P, et al. Aeroacoustic measurements[M]. Berlin:Springer-Verlag, 2002. [5] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J].Journal of Sound and Vibration, 2006, 294(4-5):856-879. [6] HÖGBOM J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J].Astronomy and Astrophysics Supplement, 1974, 15:417-426. [7] BROOKS T, HUMPHREYS W. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C]//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston:AIAA, 2006. [8] SIJTSMA P. CLEAN based on spatial source coherence[C]//13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston:AIAA, 2007. [9] BROOKS T, HUMPHREYS W, PLASSMAN G. DAMAS processing for a phased array study in the NASA langley jet noise laboratory[C]//16th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2010. [10] BROOKS T, HUMPHREYS W. Three-dimensional applications of DAMAS methodology for aeroacoustic noise source definition[C]//11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference). Reston:AIAA, 2005. [11] 杨洋, 倪计民, 褚志刚. 基于反卷积DAMAS2波束形成的发动机噪声源识别[J].内燃机工程, 2014, 35(2):59-65. YANG Y, NI J M, CHU Z G. Engine noise source identification based on DAMAS2 beamforming[J].Chinese Internal Combustion Engine Engineering, 2014, 35(2):59-65(in Chinese). [12] 薛伟诚, 杨兵, 贾少红, 等. 基于DAMAS算法的气动噪声定位研究[J].工程热物理学报, 2015, 36(10):2142-2145. XUE W C, YANG B, JIA S H, et al. Aeroacoustic source localization based on DAMAS algorithm[J].Journal of Engineering Thermophysics, 2015, 36(10):2142-2145(in Chinese). [13] 魏龙, 秦朝红, 任方, 等. 一种改进的声反卷积相关声源定位方法[J].航空学报, 2019, 40(11):123100. WEI L, QIN Z H, REN F, et al. An improved acoustic deconvolution method for localizing correlated sound sources[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(11):123100(in Chinese). [14] MA W, LIU X. DAMAS with compression computational grid for acoustic source mapping[J].Journal of Sound and Vibration, 2017, 410:473-484. [15] JORDAN P, FITZPATRICK J A, VALIōRE J C. Measurement of an aeroacoustic dipole using a linear microphone array[J].The Journal of the Acoustical Society of America, 2002, 111(3):1267-1273. [16] LIU Y, QUAYLE A R, DOWLING A P, et al. Beamforming correction for dipole measurement using two-dimensional microphone arrays[J].The Journal of the Acoustical Society of America, 2008, 124(1):182-191. [17] FLEURY V, BULTÉ J. Extension of deconvolution algorithms for the mapping of moving acoustic sources[J].The Journal of the Acoustical Society of America, 2011, 129(3):1417-1428. [18] SIJTSMA P, OERLEMANS S, HOLTHUSEN H. Location of rotating sources by phased array measurements[C]//7th AIAA/CEAS Aeroacoustics Conference and Exhibit. Reston:AIAA, 2001. [19] PANNERT W, MAIER C. Rotating beamforming-motion-compensation in the frequency domain and application of high-resolution beamforming algorithms[J].Journal of Sound and Vibration, 2014, 333(7):1899-1912. [20] TÓTH B, VAD J, KOTÁN G. Comparison of the rotating source identifier and the virtual rotating array method[J].Periodica Polytechnica Mechanical Engineering, 2018, 62(4):261-268. [21] MA W, BAO H, ZHANG C, et al. Beamforming of phased microphone array for rotating sound source localization[J].Journal of Sound and Vibration, 2020, 467:115064. [22] MO P X, JIANG W K. A hybrid deconvolution approach to separate static and moving single-tone acoustic sources by phased microphone array measurements[J].Mechanical Systems and Signal Processing, 2017, 84:399-413. [23] SCHMIDT R, FRANKS R. Multiple source DF signal processing:An experimental system[J].IEEE Transactions on Antennas and Propagation, 1986, 34(3):281-290. [24] YARDIBI T, LI J, STOICA P, et al. A covariance fitting approach for correlated acoustic source mapping[J].The Journal of the Acoustical Society of America, 2010, 127(5):2920-2931. [25] SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J].Journal of Sound and Vibration, 2011, 330(24):5835-5851. [26] PAN X J, WU H J, JIANG W K. Multipole orthogonal beamforming combined with an inverse method for coexisting multipoles with various radiation patterns[J].Journal of Sound and Vibration, 2019, 463:114979. [27] MERINO-MARTÍNEZ R, SNELLEN M, SIMONS D G. Functional beamforming applied to imaging of flyover noise on landing aircraft[J].Journal of Aircraft, 2016, 53(6):1830-1843. [28] WELCH P. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short, modified periodograms[J].IEEE Transactions on Audio and Electroacoustics, 1967, 15(2):70-73. [29] FEY U, KÖNIG M, ECKELMANN H. A new Strouhal-Reynolds-number relationship for the circular cylinder in the range 47<Re<2×105[J].Physics of Fluids, 1998, 10(7):1547-1549. |