[1] |
陈亚莉, 李美荣, 宋成. 压气机叶片型面精密数控铣加工技术应用研究[J]. 航空发动机, 2016, 42(4):93-97. CHEN Y L, LI M R, SONG C. Investigation on precision nc milling technology of compressor blade surface[J]. Aeroengine, 2016, 42(4):93-97(in Chinese).
|
[2] |
ROELKE R J, HAAS J E. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine[J]. Journal of Engineering for Power, 1983, 105(2):377-382.
|
[3] |
SUDER K L, CHIMA R V, STRAZISAR A J, et al. The effect of adding roughness and thickness to a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1995, 117(4):491-505.
|
[4] |
ROBERTS W B, ALBERT A, GEORGE K, et al. The effect of variable chord length on transonic axial rotor performance[J]. Journal of Turbomachinery, 2002, 124(3):351-357.
|
[5] |
GOODHAND M N, MILLER R J. Compressor leading edge spikes:A new performance criterion[J]. Journal of Turbomachinery, 2010, 133(2):021006.
|
[6] |
GOODHAND M N, MILLER R J. The impact of real geometries on three-dimensional separations in compressors[J]. Journal of Turbomachinery, 2011, 134(2):021007.
|
[7] |
DARIA K, OLEG B, GRIGORII P. Effect of manufacturing tolerances on the turbine blades:ASME GTINDIA2014-8253[R]. 2014.
|
[8] |
GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003,125(4):692-703.
|
[9] |
SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9):091005.
|
[10] |
JAN K, IVAN V, TOAL D J, et al. Robust turbine blade optimization in the face of real geometric variations[J]. Journal of Propulsion and Power, 2018, 34(6):1479-1493.
|
[11] |
GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to in-service geometric variation:ASME GT2012-68633[R]. 2012.
|
[12] |
高丽敏, 蔡宇桐, 曾瑞慧,等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3):525-531. GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3):525-531(in Chinese).
|
[13] |
高丽敏, 蔡宇桐, 郝燕平, 等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术, 2017,38(8):1761-1766. GAO L M, CAI Y T, HAO Y P, et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology, 2017, 38(8):1761-1766(in Chinese).
|
[14] |
张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11):2130-2138. ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2130-2138(in Chinese).
|
[15] |
郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2):216-224. ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2):216-224(in Chinese).
|
[16] |
颜勇, 祝培源, 宋立明, 等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术, 2017, 38(8):1767-1775. YAN Y, ZHU P Y, SONG L M, et al. Uncertainty quantification of cascade manufacturing error based non-stationary gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8):1767-1775(in Chinese).
|
[17] |
罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3):498-503. LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3):498-503(in Chinese).
|
[18] |
FATHI A, ALIZADEH M. Effects of blade manufacturing deviations on turbine performance:ASME GTINDIA2012-9641[R]. 2012.
|
[19] |
GIEBMANNS A, BACKHAUS J, FREY C, et al. Compressor leading edge sensitivities and analysis with an adjoint flow solver:ASME GT2013-94427[R]. 2013.
|
[20] |
XIONG J T, LIU F, YANG J, et al. Statistical evaluation of the performance impact of manufacturing variations for steam turbines:ASME GT2016-56553[R]. 2016.
|