[1] HOHEISEL H. Aerodynamic aspects of engine-aircraft integration of transport aircraft[J]. Aerospace Science and Technology, 1997, 7(1):475-487. [2] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008. [3] OLIVEIRA G L, TRAPP L G, PUPPIN-MACEDO A. Integration methodology for regional jet aircrafts with underwing engines:AIAA-2003-0934[R]. Reston, VA:AIAA, 2003. [4] SAITOH T, KIM H J, TAKENAKA K, et al. Multi-point design of wing-body-nacelle-pylon configuration:AIAA-2006-3461[R]. Reston, VA:AIAA, 2006. [5] KOC S, KIM H J, NAKAHASHI K. Aerodynamic design of complex configurations with junctions[J]. Journal of Aircraft, 2006, 43(6):1838-1844. [6] KIM H J, NAKAHASHI K. Surface mesh movement for aerodynamic design of body-installation junction[J]. AIAA Journal, 2007, 45(5):1138-1142. [7] TAKENAKA K, HATANAKA K, NAKAHASHI K. Efficient aerodynamic design of complex configurations by patch-surface approach[J]. Journal of Aircraft, 2011, 48(5):1473-1481. [8] BONS N P, MADER C A, MARTINS J, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet:AIAA-2018-0106[R]. Reston, VA:AIAA, 2018. [9] 左英桃, 傅林, 高正红, 等. 机翼-机身-短舱-挂架外形气动优化设计方法[J]. 航空动力学报, 2013, 28(9):2009-2015. ZUO Y T, FU L, GAO Z H, et al. Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J]. Journal of Aerospace Power, 2013, 28(9):2009-2015(in Chinese). [10] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese). [11] 薛帮猛, 张文升, 张志雄. 民机飞发集成构型中机翼多目标优化设计[J]. 空气动力学学报, 2018, 36(6):941-948. XUE B M, ZHANG W S, ZHANG Z X. Multi-objective optimization of civil aircrafts under engine-aircraft integration configuration[J]. Acta Aerodynamica Sinica, 2018, 36(6):941-948(in Chinese). [12] 乔磊, 白俊强, 华俊, 等. 大涵道比翼吊发动机喷流气动干扰研究[J]. 空气动力学学报, 2014, 32(4):433-438. QIAO L, BAI J Q, HUA J, et al. Interference effects of wing-mounted high bypass ratio nacelle with engine power[J]. Acta Aerodynamica Sinica, 2014, 32(4):433-438(in Chinese). [13] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese). [14] VON GEYR H F, ROSSOW C C. A correct thrust determination method for turbine powered simulators in wind tunnel testing:AIAA-2005-3707[R]. Reston, VA:AIAA, 2005. [15] LABAN M. Aircraft drag and thrust analysis:NLR-TP-2000-473[R]. Amsterdam:Netherlands Aerospace Centre, 2000. [16] ZHANG Y F, CHEN H X, FU S, et al. Drag prediction method of powered-on civil aircraft based on thrust drag bookkeeping[J]. Chinese Journal of Aeronautics, 2015, 28(4):1023-1033. [17] KOOI J W, DE HAIJ L, HEGEN G H. Engine simulation with turbofan propulsion simulators in the German-Dutch wind tunnels:AIAA-2002-2919[R]. Reston, VA:AIAA, 2002. [18] LABAN M, SOEMARWOTO B, KOOI J W. Reshaping engine nacelles for testing in wind tunnels with turbofan propulsion simulators:AIAA-2005-3703[R]. Reston, VA:AIAA, 2005. [19] BOUSQUET J M. Survey of engine integration testing in ONERA wind tunnels:AIAA-2005-3705[R]. Reston, VA:AIAA, 2005. [20] KULFAN B M, BUSSOLETTI J. Fundamental parameteric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006. [21] KULFAN B M. A universal parametric geometry representation method-CST:AIAA-2007-0062[R]. Reston, VA:AIAA, 2007. [22] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158. [23] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. |