[1] Mack L M. Stability of the compressible laminar boundary layer according to a direct numerical solution[R]. In AGARD 97, Part.1, 1965: 329-362.[2] Mack L M. Boundary-layer linear stability theory,ADP004046[R]. Pasadena,CA: Jet Propulsion Laboratory, 1969.[3] Mack L M. Transition prediction and linear stability theory[J]. Proceedings of AGARD Conference,1977, 224:5-34.[4] Mack L M. Three-dimensional effects in boundary layer stability[C]//Proceedings of 12th Symposium on Naval Hydrodyn. Washington, D.C.: National Academy of Science, 1978: 63-70.[5] Mack L M. On the stability of the boundary layer on a transonic swept wing,AIAA-1979-0264[R]. Reston: AIAA,1979.[6] Mack L M. Boundary-layer linear stability theory of special course on stability and transition of laminar flow,ADA147243[R]. Pasadena, CA: Jet Propulsion Laboratory, 1984.[7] Mack L M. Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach nambers, AIAA-1987-1413[R]. Reston: AIAA, 1987.[8] Mack L M. Stability of three-dimensional boundary layers on swept wings at transonic speed[J].Symposium Transsonicam Ⅲ, 1988: 209-223.[9] Mankbadi R R, Wu X, Lee S S. A critical-layer analysis of the resonant triad in Blasius boundary layer transition: nonlinear interaction[J]. Journal of Fluid Mechanics,1993, 256: 85-106.[10] Wu X. Viscous effects on fully coupled resonant triad interactions: an analytical approach[J]. Journal of Fluid Mechanics, 1995, 292: 377-407.[11] Wu X, Stewart P A, Cowley S J. On the catalytic role of the phase-locked interaction of Tollmien-Schlichting waves in boundary layer transition[J]. Journal of Fluid Mechanics, 2007, 590: 265-294.[12] Fasel H, Thumm A, Bestek H. Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown[J]. Transitional and Turbulent Compressible Flows, 1993, 151: 77-92.[13] Leib S J, Lee S S. Nonlinear evolution of a pair of oblique instability waves in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 1995, 282: 271-339.[14] Mayer C S J, Wernz S, Fasel H F. Investigation of oblique breakdown in a supersonic boundary layer at Mach 2 using DNS, AIAA-2007-0949[R]. Reston: AIAA, 2007.[15] Mayer C S J, Fasel H F. Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS,AIAA-2008-0591[R]. Reston: AIAA, 2008.[16] Laible A C, Mayer C S J, Fasel H F. Numerical investigation of transition for a cone at Mach 3.5: oblique breakdown, AIAA-2009-3557[R]. Reston: AIAA, 2009.[17] Mayer C S J, Laible A C, Fasel H F. Numerical investigation of transition initiated by a wave packet on a cone at Mach 3.5, AIAA-2009-3809[R]. Reston: AIAA, 2009.[18] Kosinov A D, Semionov N V, Shevelkov S G. Investigation of supersonic boundary layer stability and transition using controlled disturbances[J]. Methods of Aerophysical Research, 1994, 2: 159-166.[19] Kosinov A D, Semionov N V, Shevelkov S G, et al. Experiments on the nonlinear instability of supersonic boundary layers[J]. Nonlinear Instability of Nonparallel Flows, 1994: 196-205.[20] Ermolaev Y G, Kosinov A D, Semionov N V. Experimental investigation of laminar-turbulent transition process in supersonic boundary layer using controlled disturbances[J]. Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, 1996: 17-26.[21] Wang X J,Luo J S,Zhou H. Inherent mechanism of breakdown in laminar-turbulent transition of plane channel flows[J]. Science in China Series G Physics, Mechanics & Astronomy, 2005, 35(1): 71-78 (in Chinese). 王新军, 罗纪生, 周恒. 平面槽道流中层流-湍流转捩的"breakdown"过程的内在机理[J]. 中国科学 G辑 物理学 力学 天文学, 2005, 35 (1): 71-78.[22] Huang Z F, Cao W, Zhou H. The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode[J]. Science in China Series G Physics, Mechanics & Astronomy, 2005, 35(5): 537-547 (in Chinese). 黄章峰, 曹伟, 周恒. 超音速平板边界层转捩中层流突变为湍流的机理-时间模式[J]. 中国科学 G辑: 物理学 力学 天文学, 2005, 35(5): 537-547.[23] Cao W, Huang Z F, Zhou H. Study of the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate[J]. Applied Mathematics and Mechanics, 2006, 27(4): 379-386 (in Chinese). 曹伟, 黄章峰, 周恒. 超音速平板边界层转捩中层流突变为湍流的机理研究[J]. 应用数学和力学, 2006, 27(4): 379-386.[24] Dong M, Luo J S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(8): 912-920 (in Chinese). 董明, 罗纪生. 高超音速零攻角尖锥边界层转捩的机理[J]. 应用数学和力学, 2007, 28(8): 912-920.[25] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone[J]. AIAA Journal, 2008, 46(11): 2899-2913.[26] Li X L, Fu D X, Ma Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010,22(2): 025105.[27] Liu J X. Evolution of disturbance in hypersonic blunt cone boundary layer at small angle of attack[D]. Tianjin: Tianjin University, 2010 (in Chinese). 刘建新. 小攻角钝锥高超声速边界层的扰动演化[D].天津: 天津大学, 2010.[28] Yu M, Luo J S. Nonlinear evolution of Klebanoff type second mode disturbances in supersonic flat-plate boundary layer[J]. Applied Mathematics and Mechanics, 2014,35(3): 359-368[29] Goldstein M E. The evolution of Tollmien-Sclichting waves near a leading edge[J]. Journal of Fluid Mechanics,1983, 127: 59-81.[30] Goldstein M E. Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry[J]. Journal of Fluid Mechanics,1985,154: 509-529.[31] Ruban A I. On Tollmien-Schlichting wave generation by sound[J]. Fluid Dynamics, 1985, 19: 709-716.[32] Goldstein M E, Hultgren L S. Boundary-layer receptivity to long-wave free-stream disturbances[J]. Annual Review of Fluid Mechanics, 1989, 21: 137-166.[33] Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34: 291-319.[34] Fedorov A V. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics,2011, 43: 79-95.[35] Zhong X, Wang X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012,44: 527-561.[36] Lam S H, Rott N. Theory of linearized time-dependent boundary layers, TN-60-1100[R]. Office of Scientific Research, United States Air Force, 1960.[37] Duck P W, Ruban A I, Zhikharev C N. The generation of Tollmien-Schlichting waves by free-stream turbulence[J]. Journal of Fluid Mechanics, 1996, 312: 341-371.[38] Wu X. On local boundary-layer receptivity to vortical disturbances in the free stream[J]. Journal of Fluid Mechanics, 2001, 449: 373-393.[39] Dietz A J. Local boundary-layer receptivity to a convected free-stream disturbance[J]. Journal of Fluid Mechanics,1999, 378: 291-317.[40] Zhang Y M, Zhou H. Numerical study of local boundary layer receptivity to freestream vortical disturbances[J]. Applied Mathematics and Mechanics, 2005, 26(5): 505-511 (in Chinese). 张永明, 周恒. 自由流中涡扰动的边界层感受性的数值研究[J]. 应用数学和力学, 2005, 26(5): 505-511.[41] Wu X. Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: a second-order asymptotic theory and comparison with experiments[J]. Journal of Fluid Mechanics, 2001, 431: 91-133.[42] Luo J S, Zhou H. On the generation of Tollmien-Schlichting waves in the boundary layer of a flat plate by disturbances in the free stream[J]. Proceedings of the Royal Society, 1988, 413: 351-367.[43] Wu X. Generation of Tollmien-Schlichting waves by convecting gusts interacting with sound[J]. Journal of Fluid Mechanics, 1999, 397: 285-316.[44] Fedorov A V. Receptivity of high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics,2003, 491: 101-129.[45] Fedorov A V, Khoklov A P. Prehistory of instability in a hypersonic boundary layer[J]. Theoretical and Computational Fluid Dynamics, 2001, 14(6): 359-375.[46] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 3: effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics,2005, 532: 63-109.[47] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 2: receptivity to freestream sound[J]. Journal of Fluid Mechanics, 2003, 488: 79-121.[48] Fedorov A V, Tumin A. High-speed boundary-layer instability: old terminologyand a new framework[J].AIAA Journal, 2011, 49(8): 1647-1657.[49] Fedorov A V, Khoklov A P. Excitation of unstable modes in a supersonic boundary layer by acoustic waves[J]. Fluid Dynamics, 1991, 9: 456-467.[50] Cebeci T,Stewartson K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4): 398-405.[51] Mack L M. Stability of three dimensional boundary layers on swept wings at transonic speeds[J]. Symposium Transsonicum III, 1989: 209-223.[52] Malik M R, Balakumar P. Instability and transition in three-dimensional supersonic boundary layers, AIAA-1992-5049[R]. Reston: AIAA, 1992.[53] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at a small angle of attack-with the improvement of eN method[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(1):123-130 (in Chinese). 苏彩虹, 周恒. 小攻角高超音速尖锥边界层的转捩预测及eN法的改进[J].中国科学 G辑: 物理学 力学 天文学,2009, 39(1): 123-130.[54] Su C H, Zhou H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(6): 874-882 (in Chinese). 苏彩虹, 周恒. 超音速和高超音速有攻角圆锥边界层的转捩预测[J].中国科学 G辑 物理学 力学 天文学, 2009, 39(6): 874-882.[55] King R A. Three-dimensional boundary-layer transition on a cone at Mach 3.5[J]. Experiments in Fluids, 1992, 13: 305-314.[56] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22: 025105.[57] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[M]. West Lafayette: Purdue University Press, 2010. |