[1] WANG F, XIE X, JIANG Q, et al. Effect of turbulence on NO formation in swirling combustion[J]. Chinese Journal of Aeronautics, 2014, 27(4):797-804. [2] 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1):020036. CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):020036(in Chinese). [3] OKAFOR E C, SOMARATHNE K D A, RATTHANAN R, et al. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia[J]. Combustion and Flame, 2020, 211:406-416. [4] ALADAWY A S, LEE J G, ABDELNABI B. Effect of turbulence on NOx emission in a lean perfectly-premixed combustor[J]. Fuel, 2017, 208:160-167. [5] BISWAS S, QIAO L. A Numerical investigation of ignition of ultra-lean premixed H2/Air mixtures by pre-chamber supersonic hot jet[J]. SAE International Journal of Engines, 2017, 10(5):2231-2247. [6] 刘英杰, 刘潇, 周波, 等. 低旋流预混燃烧稳燃机理的大涡模拟[J]. 航空动力学报, 2020, 35(2):298-304. LIU Y J, LIU X, ZHOU B, et al. Large eddy simulation of low swirl premixed flame stabilization mechanism[J]. Journal of Aerospace Power, 2020, 35(2):298-304(in Chinese). [7] GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation:Current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8):1772-1784. [8] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5):961-70. CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5):961-970(in Chinese). [9] 樊雪松, 陈阳, 吴德权, 等. 反应机理对air/H2燃烧系统多场耦合仿真的适用性[J]. 航空动力学报, 2018, 33(10):2392-2403. FAN X S, CHEN Y, WU D Q, et al. Applicability of reaction mechanisms to multi-field coupling simulation of air/H2 combustion system[J]. Journal of Aerospace Power, 2018, 33(10):2392-2403(in Chinese). [10] WANG H, SHEEN D A. Combustion kinetic model uncertainty quantification, propagation and minimization[J]. Progress in Energy and Combustion Science, 2015, 47:1-31. [11] SHEEN D A, WANG H. The method of uncertainty quantification and minimization using polynomial chaos expansions[J]. Combustion and Flame, 2011, 158(12):2358-2374. [12] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1):261-273. YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):261-273(in Chinese). [13] KHALIL M, LACAZE G, OEFELEIN J C, et al. Uncertainty quantification in LES of a turbulent bluff-body stabilized flame[J]. Proceedings of the Combustion Institute, 2015, 35(2):1147-1156. [14] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington,D.C.:NASA,2014. [15] MUELLER M E, RAMAN V. Model form uncertainty quantification in turbulent combustion simulations:Peer models[J]. Combustion and Flame, 2018, 187:137-146. [16] WARNATZ J. Resolution of gas phase and surface combustion chemistry into elementary reactions[J]. Symposium (International) on Combustion, 1992, 24(1):553-579. [17] SMOOKE M D, RABITZ H, REUVEN Y, et al. Application of sensitivity analysis to premixed hydrogen-air flames[J]. Combustion Science and Technology, 1988, 59(4-6):295-319. [18] DUCHAINE F, BOUDY F, DUROX D, et al. Sensitivity analysis of transfer functions of laminar flames[J]. Combustion and Flame, 2011, 158(12):2384-2394. [19] REN Z Y, POPE S B. Sensitivity calculations in PDF modelling of turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1629-1637. [20] ZHOU H, LI S, REN Z Y, et al. Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis[J]. Combustion and Flame, 2017, 181:136-148. [21] WANG H, ZHOU H, REN Z Y, et al. Transported PDF simulation of turbulent CH4/H2 flames under MILD conditions with particle-level sensitivity analysis[J]. Proceedings of the Combustion Institute, 2019, 37(4):4487-4495. [22] 周华, 王琥, 任祝寅. 湍流燃烧概率密度函数(PDF)模拟的敏感性分析[J]. 工程热物理学报, 2017, 38(1):208-212. ZHOU H, WANG H, REN Z Y. Sensitivity analysis in transported PDF simulations of turbulent combustion[J]. Journal of Engineering Thermophysics, 2017, 38(1):208-212(in Chinese). [23] LUCOR D, MEYERS J, SAGAUT P. Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos[J]. Journal of Fluid Mechanics, 2007, 585:255-279. [24] SCHAEFER J, HOSDER S, WEST T, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2016, 55(1):195-213. [25] MARGHERI L, MELDI M, SALVETTI M V, et al. Epistemic uncertainties in RANS model free coefficients[J]. Computers & Fluids, 2014, 102:315-335. [26] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11):110822. [27] GORLÉ C, IACCARINO G. A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations[J]. Physics of Fluids, 2013, 25(5):055105. [28] MISHRA A A, IACCARINO G. Uncertainty estimation for Reynolds-Averaged Navier-Stokes predictions of high-speed aircraft nozzle jets[J]. AIAA Journal, 2017, 55(11):3999-4004. [29] GORLÉ C, ZEOLI S, EMORY M, et al. Epistemic uncertainty quantification for Reynolds-averaged Navier-Stokes modeling of separated flows over streamlined surfaces[J]. Physics of Fluids, 2019, 31(3):035101. [30] MUELLER M E, IACCARINO G, PITSCH H. Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1):1299-1306. [31] MUELLER M E, RAMAN V. Effects of turbulent combustion modeling errors on soot evolution in a turbulent nonpremixed jet flame[J]. Combustion and Flame, 2014, 161(7):1842-1848. [32] CONSTANTINE P G, DOW E, WANG Q. Active subspace methods in theory and practice:applications to kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36(4):A1500-A1524. [33] CONSTANTINE P G. Active subspaces[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2015. [34] CONSTANTINE P G, DIAZ P. Global sensitivity metrics from active subspaces[J]. Reliability Engineering & System Safety, 2017, 162:1-13. [35] PARENTE A, SUTHERLAND J C, TOGNOTTI L, et al. Identification of low-dimensional manifolds in turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1579-1586. [36] XIE W, LU Z, REN Z, et al. Dynamic adaptive acceleration of chemical kinetics with consistent error control[J]. Combustion and Flame, 2018, 197:389-399. [37] SUTHERLAND J C, PARENTE A. Combustion modeling using principal component analysis[J]. Proceedings of the Combustion Institute, 2009, 32(1):1563-1570. [38] ISAAC B J, THORNOCK J N, SUTHERLAND J, et al. Advanced regression methods for combustion modelling using principal components[J]. Combustion and Flame, 2015, 162(6):2592-2601. [39] ECHEKKI T, MIRGOLBABAEI H. Principal component transport in turbulent combustion:A posteriori analysis[J]. Combustion and Flame, 2015, 162(5):1919-1933. [40] MALIK M R, ISAAC B J, COUSSEMENT A, et al. Principal component analysis coupled with nonlinear regression for chemistry reduction[J]. Combustion and Flame, 2018, 187:30-41. [41] BIGLARI A, SUTHERLAND J C. A filter-independent model identification technique for turbulent combustion modeling[J]. Combustion and Flame, 2012, 159(5):1960-1970. [42] MIRGOLBABAEI H, ECHEKKI T. A novel principal component analysis-based acceleration scheme for LES-ODT:An a priori study[J]. Combustion and Flame, 2013, 160(5):898-908. [43] MALIK M R, OBANDO VEGA P, COUSSEMENT A, et al. Combustion modeling using Principal Component Analysis:A posteriori validation on Sandia flames D, E and F[J]. Proceedings of the Combustion Institute, 2021, 38(2):2635-2643. [44] CONSTANTINE P G, EMORY M, LARSSON J, et al. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet[J]. Journal of Computational Physics, 2015, 302:1-20. [45] DEL ROSARIO Z, CONSTANTINE P, IACCARINO G. Developing design insight through active subspaces[C]//19th AIAA Non-Deterministic Approaches Conference. Reston:AIAA, 2017. [46] GREY Z J, CONSTANTINE P G. Active subspaces of airfoil shape parameterizations[J]. AIAA Journal, 2018, 56(5):2003-2017. [47] SESHADRI P, SHAHPAR S, CONSTANTINE P, et al. Turbomachinery active subspace performance maps[J]. Journal of Turbomachinery, 2018, 140(4):041003. [48] CORTESI A F, CONSTANTINE P G, MAGIN T E, et al. Forward and backward uncertainty quantification with active subspaces:Application to hypersonic flows around a cylinder[J]. Journal of Computational Physics, 2020, 407:109079. [49] MAGRI L, BAUERHEIM M, NICOUD F, et al. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification[J]. Journal of Computational Physics, 2016, 325:411-421. [50] GUAN C, ZHAI J Q, HAN D. Cetane number prediction for hydrocarbons from molecular structural descriptors based on active subspace methodology[J]. Fuel, 2019, 249:1-7. [51] GUAN C, LU M R, ZENG W, et al. Prediction of standard enthalpies of formation based on hydrocarbon molecular descriptors and active subspace methodology[J]. Industrial & Engineering Chemistry Research, 2020, 59(10):4785-4791. [52] GUAN C, MA Q J, HUANG Z, et al. Application of active subspace method in gas exchange strategy calibration on a variable valve timing gasoline engine[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7):071003. [53] JI W Q, WANG J X, ZAHM O, et al. Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[J]. Combustion and Flame, 2018, 190:146-157. [54] JI W Q, REN Z Y, MARZOUK Y, et al. Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces[J]. Proceedings of the Combustion Institute, 2019, 37(2):2175-2182. [55] VOHRA M, ALEXANDERIAN A, GUY H, et al. Active subspace-based dimension reduction for chemical kinetics applications with epistemic uncertainty[J]. Combustion and Flame, 2019, 204:152-161. [56] WANG N N, XIE Q, SU X Y, et al. Quantification of modeling uncertainties in turbulent flames through successive dimension reduction[J]. Combustion and Flame, 2020, 222:476-489. [57] WANG N N, TIANWEI Y W, REN Z Y. Active subspace variation and modeling uncertainty in a supersonic flame simulation[J]. AIAA Journal, 2021, 59(5):1798-1807. [58] PINKUS A. Ridge functions[M]. Cambridge:Cambridge University Press, 2015. [59] CONSTANTINE P G, ZAHARATOS B, CAMPANELLI M. Discovering an active subspace in a single-diode solar cell model[J]. Statistical Analysis and Data Mining:The ASA Data Science Journal, 2015, 8(5-6):264-273. [60] VOHRA M, MAHADEVAN S. Discovering the active subspace for efficient UQ of molecular dynamics simulations of phonon transport in silicon[J]. International Journal of Heat and Mass Transfer, 2019, 132:577-586. [61] CABRA R, MYHRVOLD T, CHEN J Y, et al. Simultaneous laser Raman-Rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute, 2002, 29(2):1881-1888. [62] LI J, ZHAO Z W, KAZAKOV A, et al. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics, 2004, 36(10):566-575. [63] SHEEN D A, YOU X Q, WANG H, et al. Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1):535-542. [64] KONNOV A A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion[J]. Combustion and Flame, 2008, 152(4):507-528. [65] BURROWS M, KURKOV A. Supersonic combustion of hydrogen in a vitiated air stream using stepped-wall injection[C]//7th Propulsion Joint Specialist Conference. Reston:AIAA, 1971. [66] BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9):1217-1218. [67] WU W T, PIAO Y, LIU H. Analysis of flame stabilization mechanism in a hydrogen-fueled reacting wall-jet flame[J]. International Journal of Hydrogen Energy, 2019, 44(48):26609-26623. [68] ZHANG L, WANG N N, WEI J L, et al. Exploring active subspace for neural network prediction of oscillating combustion[J]. Combustion Theory and Modelling, 2021, 25(3):570-587. [69] BRIONES A M, RUMPFKEIL M P, THOMAS N R, et al. Effect of deterministic and continuous design space resolution on multiple-objective combustor optimization[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(12):121012. |