[1] Wang Z L. Hydraulic servo control. Beijing: Press of Beijing Institute of Aeronautics, 1987: 1. (in Chinese) 王占林. 液压伺服控制. 北京: 北京航空学院出版社, 1987:1.[2] Wang Z L. Modern electro-hydraulic servo control. Beijing: Beihang University Press, 2005: 1-3. (in Chinese) 王占林. 近代电气液压伺服控制. 北京: 北京航空航天大学出版社, 2005: 1-3.[3] Sjöberg J, Zhang Q, Ljung L, et al. Nonlinear black-box modeling in system identification: a unified overview. Automatica, 1995, 31(12): 1691-1724.[4] Zhao P. Research on nonlinear model identification of hydraulic servo system. Beijing: School of Automation Science and Electrical Engineering, Beihang University, 2011. (in Chinese) 赵盼. 液压伺服系统非线性模型辨识方法研究. 北京: 北京航空航天大学自动化科学与电气工程学院, 2011.[5] Wang X J, Shao J P, Jiang J H, et al. System identification and control of the electro-hydraulic servo system of a continuous rotary motor. Journal of Harbin Engineering University, 2011, 32(8): 1045-1051. (in Chinese) 王晓晶, 邵俊鹏, 姜继海, 等. 连续回转马达电液伺服系统辨识及控制. 哈尔滨工程大学学报, 2011, 32(8): 1045-1051.[6] Lohmann T, Bock H G, Schloeder J P. Numerical methods for parameter estimation and optimal experiment design in chemical reaction systems. Industrial & Engineering Chemistry Research, 1992, 31(1): 54-57.[7] Müller T G, Noykova N, Gyllenberg M, et al. Parameter identification in dynamical models of anaerobic waste water treatment. Mathematical Biosciences, 177-178: 147-160.[8] Bock H G. Recent advances in parameter identification techniques for O.D.E. Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an Internation Workshop, 1983,2: 95-121.[9] Ramsay J O, Hooker G, Campbell D, et al. Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2007, 69(5): 741-796.[10] Li Z, Osborne M R, Prvan T. Parameter estimation of ordinary differential equations. IMA Journal of Numerical Analysis, 2005, 25(2): 264-285.[11] Ardenghi J I, Maciel M C, Verdiell A B. A trust-region-approach for solving a parameter estimation problem from the biotechnology area. Applied Numerical Mathematics, 2003, 47(3-4): 281-294.[12] Coleman T F, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 1996, 6(2): 418-445.[13] Byrd R H, Schnabel R B, Shultz G A. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Programming, 1988, 40(1): 247-263.[14] Coleman T F, Li Y. A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 1996, 6(4): 1040-1058.[15] Coleman T F, Hempel C. Computing a trust region step for a penalty function. SIAM Journal on Scientific and Statistical Computing, 1990, 11(1): 180-201.[16] Conn A R, Gould N I M, Toint P L. Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis, 1988, 25(2): 433-460.[17] Fang C Z, Xiao D Y. Process identification. Beijing: Tsinghua University Press, 1988:100-110. (in Chinese) 方崇智, 萧德云. 过程辨识. 北京: 清华大学出版社, 1988:100-110. |