[1] Zhou J F, Gu B Q. Controllability of spiral groove mechanical seal. Chinese Journal of Mechanical Engineering, 2009, 45(1): 106-110. (in Chinese) 周剑锋, 顾伯勤. 螺旋槽机械密封的可控性. 机械工程学报, 2009, 45(1): 106-110.[2] Miller B, Green I. Semi-analytical dynamic analysis of spiral-grooved mechanical gas face seals. ASME Journal of Tribology, 2003, 125(2): 403-413.[3] Zhang H, Miller B A, Landers R G. Nonlinear modeling of mechanical gas face seal systems using proper orthogonal decomposition. ASME Journal of Tribology, 2006, 128(4): 817-827.[4] Zirkelback N, San andès L. Effect of frequency excitation on force coefficients of spiral groove gas seals. ASME Journal of Tribology, 1999, 121(4): 853-863.[5] Zhang G Y, Yuan X Y, Zhao W G, et al. Theoretical and experimental approach of separation speed of spiral groove face seals. Chinese Journal of Mechanical Engineering, 2008, 44(8): 55-60. (in Chinese) 张国渊, 袁小阳, 赵伟刚, 等. 螺旋槽端面密封脱开转速的理论及实验研究. 机械工程学报, 2008, 44(8): 55-60.[6] Ma G, Xi P, Shen X M, et al. Analysis of quasi-dynamic characteristics of compliant floating ring gas cylinder seal. Journal of Aerospace Power, 2010, 25(5): 1190-1196. (in Chinese) 马纲, 席平, 沈心敏,等. 柔性支承浮环柱面气膜密封准动态特性分析. 航空动力学报, 2010, 25(5): 1190-1196.[7] Liu Z, Liu Y, Liu X. Optimization design of main parameters for double spiral grooves face seal. Science in China, Series E: Technological Sciences, 2007, 50(4): 448-453.[8] Li Z G, Zhang G Y, Yuan X Y, et al. Static and dynamic characteristics of hydrodynamic mechanical seal. China Mechanical Engineering, 2006, 17(5): 457-460. (in Chinese) 李治国, 张国渊, 袁小阳, 等. 流体动静压端面密封的静动特性分析. 中国机械工程, 2006, 17(5): 457-460.[9] Zhang G Y, Zhao W G, Yan X T, et al. Experimental approach for water-lubricated high-speed controllable spiral-groove face seals. Journal of Aerospace Power, 2011, 26(4): 947-953. (in Chinese) 张国渊, 赵伟刚, 闫秀天, 等. 可控式液体润滑高速螺旋槽端面密封试验研究. 航空动力学报, 2011, 26(4): 947-953.[10] Zhang G Y, Zhao W G, Yan X T, et al. Theoretical and experimental study on characteristics of water-lubricated double spiral grooved seals. Tribology Transactions, 2011, 54(3): 362-369.[11] Wang A X, Ma Y C, Fu Y. Proper orthogonal decomposition for the nons-tationary Navier-Stokes equations based on two-grid method. Basic Sciences Journal of Textile Universities, 2009, 22(1): 76-81. (in Chinese) 王阿霞, 马逸尘, 付英. 基于双重网格法的非定常N-S方程POD数值模拟. 纺织高校基础科学学报, 2009, 22(1): 76-81.[12] Amabiliam, Sarkar A, Paidoussism P. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method. Journal of Sound and Vibration, 2006, 290(3-5): 736-762.[13] Temam R. Navier-Stokes equations: theory and numerical analysis. New York: Academic Press, 2001.[14] Homescu C, Petzold L, Serban R. Error estimation for reduced-order models of dynamical systems. Journal of Numerical Analysis, 2005, 43(4): 1693-1714.[15] Smith T R, Moehlis J, Holmes P. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dynamics, 2005, 41(1-3): 275-307.[16] Chen G, Li Y M, Yang G R, et al. Design of active control law for aeroelastic systems via reduced order models. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 12-18. (in Chinese) 陈刚, 李跃明, 闫桂荣, 等. 基于降阶模型的气动弹性主动控制律设计. 航空学报, 2010, 31(1): 12-18. |