航空学报 > 2011, Vol. 32 Issue (10): 1951-1960   doi: CNKI:11-1929/V.20110727.0907.001

机器人辅助飞机装配制孔中位姿精度补偿技术

曲巍崴, 董辉跃, 柯映林   

  1. 浙江大学 机械工程学系, 浙江 杭州 310027
  • 收稿日期:2011-01-10 修回日期:2011-03-07 出版日期:2011-10-25 发布日期:2011-10-27
  • 通讯作者: Tel.: 0571-87953929 E-mail: donghuiyue@zju.edu.cn E-mail:donghuiyue@zju.edu.cn
  • 作者简介:曲巍崴(1981- ) 女,博士,学科博士后。主要研究方向:机器人自动化制孔,反求工程,CAD/CAM。 Tel: 0571-87953929 E-mail: qwwwwl@163.com; 董辉跃(1974- ) 男,博士,副研究员。主要研究方向:复合材料加工,航空合金材料加工。 Tel: 0571-87953929 E-mail: donghuiyue@zju.edu.cn; 柯映林(1963- ) 男,博士,教授,博士生导师。主要研究方向:飞机数字化装配技术和系统,CAD/CAE/CAM,反求工程CAD建模技术及系统,难加工材料加工新技术。 Tel: 0571-87952337 E-mail: ylke@zju.edu.cn
  • 基金资助:

    中央高校基本科研业务费专项资金(2010QNA4024)

Pose Accuracy Compensation Technology in Robot-aided Aircraft Assembly Drilling Process

QU Weiwei, DONG Huiyue, KE Yinglin   

  1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2011-01-10 Revised:2011-03-07 Online:2011-10-25 Published:2011-10-27

摘要: 在飞机自动化装配中,机器人制孔技术由于其高度柔性和相对低成本而倍受关注。然而,机器人本身的动、静态误差及制孔过程大量坐标系标定和坐标转换会引起难以补偿的残留误差,为提高机器人制孔的位置和姿态精度,构建一种基于激光跟踪仪闭环反馈的机器人辅助飞机装配制孔系统。本文首先论述应用激光跟踪仪建立系统中关键坐标系的方法,并分析了机器人制孔过程中残留误差的构成因素。然后通过机器人末端制孔工具在加工位置处的理论位姿与实际位姿匹配运算,为修正机器人制孔过程中由机器人动静态误差、机械加工、坐标转换算法、测量仪器等因素引起的残留误差提供依据,以提高机器人制孔系统的相对定位精度。并通过仿真实验验证上述算法修正残留误差的可行性。最后,对壁板类零件进行实际加工试验。试验表明,针对具体的制孔系统和对象,采用激光跟踪仪闭环反馈补偿后,可将机器人末端工具的相对位置精度、角度精度分别提高至±0.2 mm和±1″以内。这种技术有效抑制了制孔过程中由于机械加工、坐标转换算法、测量仪器等复杂组合因素所带来的残留误差,满足飞机装配中法向制孔的精度要求。

关键词: 工业机器人, 飞机装配, 高精度制孔, 闭环反馈, 激光测量, 位姿补偿, 坐标转换

Abstract: In automatic aircraft assembly, one focus of attention is robotic drilling technology with its high flexibility and relatively low cost. However, pose errors hard to compensate of the robotic end tool may exist which are caused not only by the dynamic and static error of the robot, but also by errors in the calibration and transformation of the coordinate frames. To improve the accuracy of the position and orientation of the robotic end tool, a robot-aided aircraft assembly drilling system is constructed based on laser tracker closed-loop feedback. Methods to build key coordinate frames of the system using the laser tracker are first discussed. Then, the constitutive factors of the robotic tool pose error are analyzed. A pose difference matrix between the theoretical pose and actual pose of the robotic tool in the drilling position is evaluated to eliminate remnant errors caused by the robotic dynamic error, static error, machining error, matching error and measuring error, etc. Finally, a simulation test for validating the feasibility of the above algorithm and a drilling test of ribbed-plate parts is executed. For a robotic drilling prototype system, by introducing the laser tracker closed-loop feedback compensation, the robotic drilling error is such that the position precision is effectively controlled within ±0.2 mm and the orientation precision of the normal angle is within ±1". The accuracy and quality obtained by the above robot-aided drilling method can satisfy the requirements of aircraft assembly.

Key words: industrial robots, aircraft assembly, high-precision drilling, closed-loop feedback, laser measurement, pose compensation, coordinates transformation

中图分类号: