ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Safety separation calculation model for multi-rotor drones in low-altitude airspace based on avoidance strategy
Received date: 2025-02-24
Revised date: 2025-03-05
Accepted date: 2025-03-27
Online published: 2025-04-17
Supported by
National Key R&D Program(2022YFB4300903);National Natural Science Foundation of China Civil Aviation Joint Research Fund(U2433217);Sichuan Province Major Science and Technology Special Project(2024ZDZX0044)
The safety separation of drones in low-altitude airspace is a fundamental prerequisite for ensuring the safe and orderly flight of low-altitude drones and for promoting the healthy development of the low-altitude economy. Low-altitude drones are predominantly of multi-rotor configurations, and the calculation of their safety separation has not yet fully taken into account the drone’s maneuver collision avoidance strategies. The main issue lies in the fact that existing models, designed for two-aircraft maneuver collision avoidance strategies, cannot adapt to complex multi-aircraft encounter scenarios. Based on encounter scenarios, this paper establishes a safety separation calculation model for multi-rotor drones by considering various factors such as the motion state of multi-rotor drones, relative velocity, environmental factors, navigation position errors, flight technical errors, and system redundancy. Using kinematic principles and the closest point of approach, this paper derives the calculation formulas for avoidance separation during both dual-aircraft and multi-aircraft encounters. Moreover, by constructing diverse collision avoidance strategies, the paper provides numerical values for dual-aircraft and multi-aircraft avoidance separation under strong wind interference and system delays through simulation methods. Finally, the safety separation for multi-aircraft encounters at different approach rates are presented, providing a reference for low-altitude operation safety and separation management.
Yunxiang CHEN , Jianping ZHANG , Zhiyuan WANG , Xiang ZOU , Yifei ZHAO , Tingfeng LAI . Safety separation calculation model for multi-rotor drones in low-altitude airspace based on avoidance strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(11) : 531887 -531887 . DOI: 10.7527/S1000-6893.2025.31887
[1] | FAA. Nextgen concept of operations for urban air mo-bility (UAM) v1.0[R].Washington, D.C.: FAA, 2020. |
[2] | FAA. Urban air mobility (UAM) concept of operations0[R]. Washington, D.C.: FAA, 2023. |
[3] | SESAR 3 JU. U-space CONOPS 4th Edition[EB/OL]. [2023-09-07]. . |
[4] | BAURANOV A, RAKAS J. Designing airspace for urban air mobility: A review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125: 100726. |
[5] | 中国民用航空总局. 2023年民航行业发展统计公报[EB/OL].[2025-03-12]. . |
Civil Aviation Administration of China. Statistical communiqué on the development of civil aviation industry in 2023 [EB/OL]. [2025-03-12]. . | |
[6] | 国务院, 中央军委. 无人驾驶航空器飞行管理暂行条例[J]. 中华人民共和国国务院公报, 2023(20): 6-16. |
The State Council of the People’s Republic of China, The Central Military Commission of the Communist Party of china. Interim regulations on flight management of unmanned aerial vehicles[J]. Gazette of the State Council of the People’s Republic of China, 2023(20): 6-16 (in Chinese). | |
[7] | 中国民用航空局. 民用无人驾驶航空器运行安全管理规则[J]. 中华人民共和国国务院公报, 2024(9): 36-85. |
Civil Aviation Administration of China. Civil unmanned aerial vehicle operation safety management rules[J]. Gazette of the State Council of the People’s Republic of China, 2024(9): 36-85 (in Chiness). | |
[8] | 张建平, 张翔, 邹翔, 等.无人机管控及应用服务体系建设[EB/OL].(2021-08-11).[2025-05-25].. |
ZHANG J P, ZHANG X, ZOU X, et al. Construction of UAV control and application service system[EB/OL].(2021-08-11). [2025-05-25]. (in Chinese). | |
[9] | 陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237. |
CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237 (in Chinese). | |
[10] | ICAO. A unified framework for collision risk modelling in support of the manual on airspace planning methodology for the determination of separation minima: Doc 9689[R]. Montreal: ICAO, 1998. |
[11] | REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. Journal of Navigation, 1997, 50(3): 436-447. |
[12] | BROOKER P. Lateral collision risk in air traffic track systems: A‘post-Reich’ event model[J]. Journal of Navigation, 2003, 56(3): 399-409. |
[13] | BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. |
[14] | 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 29(6): 1411-1418. |
XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1411-1418 (in Chinese). | |
[15] | 徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报, 2008, 26(3): 1-4. |
XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on event[J]. Journal of Civil Aviation University of China, 2008, 26(3): 1-4 (in Chinese). | |
[16] | 张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术, 2023, 45(10): 3149-3156. |
ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics, 2023, 45(10): 3149-3156 (in Chinese). | |
[17] | 王兴隆, 王友杰. 基于改进Event模型的多旋翼型eVTOL垂直间隔安全评估方法[J]. 交通信息与安全, 2024, 42(1): 19-27. |
WANG X L, WANG Y J. A safety evaluation of vertical separation for multi-rotor eVTOL based on an improved event model[J]. Journal of Transport Information and Safety, 2024, 42(1): 19-27 (in Chinese). | |
[18] | 王兴隆, 王友杰. 面向城市低空的多机型eVTOL安全间隔评估[J]. 航空学报, 2025, 46(1): 330604. |
WANG X L, WANG Y J. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604 (in Chinese). | |
[19] | PUCHOL C C, VICO NAVARRO J, CHUQUITARCO-JIMéNEZ C A, et al. BUBBLES separation management environment: Architecture and validation of a separation management tool for UTM[C]∥2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2023: 1-10. |
[20] | 刘继新, 蒋伶潇, 刘禹汐, 等. 无人机冲突探测与解脱技术研究概述[J]. 科学技术与工程, 2023, 23(26): 11081-11089. |
LIU J X, JIANG L X, LIU Y X, et al. Review of unmanned aerial vehicle conflict detection and resolution technology[J]. Science Technology and Engineering, 2023, 23(26): 11081-11089 (in Chinese). | |
[21] | FREMOND R, XU Y, INALHAN G. Application of an autonomous multi-agent system using proximal policy optimisation for tactical deconfliction within the urban airspace[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10. |
[22] | HUANG C, PETRUNIN I, TSOURDOS A. Strategic conflict management using recurrent multi-agent reinforcement learning for urban air mobility operations considering uncertainties[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 20. |
[23] | MUR?A M C R. Identification and prediction of urban airspace availability for emerging air mobility operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103274. |
[24] | PUCHOL C C, VéLEZ N V, TEJEDOR J V B, et al. BUBBLES: A new concept of operations for separation management in the U-space[J]. Journal of Physics: Conference Series, 2023, 2526(1): 012092. |
[25] | Union European. Algorithm for analysing the collision risk: SESAR-ER4-31-2019[R].European Union, 2021. |
[26] | ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619. |
[27] | LEE S, ABRAMSON M, PHILLIPS J D, et al. Preliminary analysis of separation standards for urban air mobility using unmitigated fast-time simulation[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10. |
[28] | 陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815. |
CHEN Y J, YU S S, ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815 (in Chinese). | |
[29] | 张洪海, 严勇杰, 邹依原, 等. 无人机安全风险评估指标及方法[J]. 指挥信息系统与技术, 2022, 13(2): 56-62, 90. |
ZHANG H H, YAN Y J, ZOU Y Y, et al. Safety risk assessment index and assessment method for unmanned aerial vehicles[J]. Command Information System and Technology, 2022, 13(2): 56-62, 90 (in Chinese). | |
[30] | CHEN C, EDWARDS M W, GILL B, et al. Defining well clear separation for unmanned aircraft systems operating with noncooperative aircraft[C]∥AIAA Aviation 2019 Forum. AIAA, 2019. |
[31] | MANFREDI G, JESTIN Y. Are you clear about “well clear”?[C]∥2018 International Conference on Unmanned Aircraft Systems, 2018. |
[32] | JARUS. JARUS guidelines on specific operations risk assessment (SORA): JAR-DEL-WG6-D.04[R]. Washington, D.C.: JARUS, 2016. |
[33] | SUN R, ZHANG Y C, YE B J, et al. A required navigation performance based approach to monitor the accuracy and integrity performance of UAVs for delivery applications[C]∥China Satellite Navigation Conference, 2018. |
[34] | 程琦, 孙蕊, 张文宇, 等. 无人机快递RNP的总系统误差建模及灵敏度分析[C]∥第十届中国卫星导航年会论, 2019. |
CHENG Q, SUN R, ZHANG W Y,et al. Modeling and sensitivity analysis of total system error of UAV express RNP[C]∥Proceedings of the 10th China Satellite Navigation Annual Conference, 2019 (in Chinese). | |
[35] | 范龙, 柴洪洲. 北斗二代卫星导航系统定位精度分析方法研究[J]. 海洋测绘, 2009, 29(1): 25-27, 45. |
FAN L, CHAI H Z. Study on method of analyzing the positioning accuracy of Beidou 2nd generation satellite navigation system[J]. Hydrographic Surveying and Charting, 2009, 29(1): 25-27, 45 (in Chinese). | |
[36] | 徐沛宁, 陈荣伟, 张静, 等. 北斗单频星基增强服务性能初步评估[J]. 导航定位学报, 2023, 11(3): 90-95. |
XU P N, CHEN R W, ZHANG J, et al. Preliminary performance analysis of BDSBAS-B1C over China[J]. Journal of Navigation and Positioning, 2023, 11(3): 90-95 (in Chinese). |
/
〈 |
|
〉 |