ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Thermal management technologies of high-power-density high-efficiency electric machine systems for more electric aircraft
Received date: 2024-10-11
Revised date: 2024-10-25
Accepted date: 2024-11-15
Online published: 2024-12-05
Supported by
National Natural Science Foundation of China(U2141223)
Electric machine is the core unit of the power supply and electric drive system of more electric aircraft, playing a key role in improving the comprehensive performance of aircraft. The advanced thermal management approaches are crucial foundations to achieve energy optimization for more electric aircraft. This paper first summarizes the functions of the electric machine system on the more electric aircraft and its characteristics of high power-density, high efficiency and high reliability. The thermal management problems and challenges encountered by electric machine systems, focusing on the heat sources, heat dissipation conditions, and application environment, are analyzed, which further confirms the necessity for efficient cooling and thermal management for electric machine systems in more electric aircraft. The key technologies in loss suppression, heat isolation/conduction and heat dissipation of electric machine systems are discussed. Based on the analysis above, concepts of active temperature control and integrated thermal management for electric machines in more electric aircraft are proposed. The cooling and thermal management of the electric machine systems are considered from the levels of the aircraft and the airborne system, providing new ideas and requirements for the optimal design of core components in electric machine systems.
Zhuoran ZHANG , Jian ZHANG , Guangyuan HU , Han XUE , Hanqi LI , Li YU . Thermal management technologies of high-power-density high-efficiency electric machine systems for more electric aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(6) : 531380 -531380 . DOI: 10.7527/S1000-6893.2024.31380
1 | WHEELER P, BOZHKO S. The more electric aircraft: technology and challenges[J]. IEEE Electrification Magazine, 2014, 2(4): 6-12. |
2 | SARLIOGLU B, MORRIS C T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1): 54-64. |
3 | 焦宗夏, 孔祥东, 王少萍, 等. 大型飞机电液动力控制与作动系统新体系基础研究[J]. 中国基础科学, 2018, 20(2): 41-47. |
JIAO Z X, KONG X D, WANG S P, et al. Advancements of basic researches on large aircraft of electro-hydraulic power and actuation system new architecture[J]. China Basic Science, 2018, 20(2): 41-47 (in Chinese). | |
4 | LEBEY T, RUMI A, CAVALLINI A. Challenges for electrical insulation systems in high voltage aviation applications[J]. IEEE Electrical Insulation Magazine, 2022, 38(6): 5-11. |
5 | XU Z Y, XU Y M, GAI Y H, et al. Thermal management of drive motor for transportation: Analysis methods, key factors in thermal analysis, and cooling methods-a review[J]. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4751-4774. |
6 | 屠敏, 袁耿民, 薛飞, 等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6): 523629. |
TU M, YUAN G M, XUE F, et al. Application of integrated thermal management in development of advanced fighter system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523629 (in Chinese). | |
7 | 魏宇豪, 葛玉雪, 赵倩, 等. 双油箱燃油热管理系统性能分析[J]. 航空学报, 2024, 45(14): 129629. |
WEI Y H, GE Y X, ZHAO Q, et al. Performance analysis of dual-tank fuel thermal management system[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129629 (in Chinese). | |
8 | N?LAND J K, LEANDRO M, SUUL J A, et al. High-power machines and starter-generator topologies for more electric aircraft: A technology outlook[J]. IEEE Access, 2020, 8: 130104-130123. |
9 | 张卓然, 许彦武, 姚一鸣, 等. 多电飞机电力系统及其关键技术[J]. 南京航空航天大学学报, 2022, 54(5): 969-984. |
ZHANG Z R, XU Y W, YAO Y M, et al. Electric power system and key technologies of more electric aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 969-984 (in Chinese). | |
10 | 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
11 | RICHTER E, LYONS J P, FERREIRA C, et al. Initial testing of a 250 kW starter/generator for aircraft applications[C]∥SAE Technical Paper Series. Warrendale: SAE International, 1994. |
12 | ZHANG Z R, YU L, WANG Y T, et al. Overview and design methodology of doubly salient brushless dc generators with stator-field winding[J]. IET Electric Power Applications, 2017, 11(2): 197-211. |
13 | 秦海鸿, 严仰光. 多电飞机的电气系统[M]. 北京: 北京航空航天大学出版社, 2016. |
QIN H H, YAN Y G. Power system for more electric aircraft[M]. Beijing: Beihang University Press, 2016 (in Chinese). | |
14 | RECALDE A A, LUKIC M, HEBALA A, et al. Energy storage system selection for optimal fuel consumption of aircraft hybrid electric taxiing systems?[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1870-1887. |
15 | HEINRICH M T E, KELCH F, MAGNE P, et al. Regenerative braking capability analysis of an electric taxiing system for a single aisle midsize aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 298-307. |
16 | 叶群峰. 从B787飞机看维修性设计的发展方向[J]. 民用飞机设计与研究, 2010(3): 51-53. |
YE Q F. Development tendency of maintainability design as viewed from the B787[J]. Civil Aircraft Design & Research, 2010(3): 51-53 (in Chinese). | |
17 | 刘欣, 丁立, 杨春信, 等. 高空飞行器舱内强制对流换热随压降的衰减变化[J]. 热科学与技术, 2008, 7(4): 296-300. |
LIU X, DING L, YANG C X, et al. Attenuation of air forced convection with air pressure dropping in high altitude aircraft cabin[J]. Journal of Thermal Science and Technology, 2008, 7(4): 296-300 (in Chinese). | |
18 | SOARES C. Gas turbines: A handbook of air, land and sea applications[M]. Amsterdam: Elsevier, 2011. |
19 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
20 | KIM C W, JANG G H, KIM J M, et al. Comparison of axial flux permanent magnet synchronous machines with electrical steel core and soft magnetic composite core[J]. IEEE Transactions on Magnetics, 2017, 53(11): 8210004. |
21 | FERNANDO N, VAKIL G, ARUMUGAM P, et al. Impact of soft magnetic material on design of high-speed permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2415-2423. |
22 | 刘瑞芳, 朱健, 曹君慈. 定子铁心采用非晶与硅钢的电动汽车用永磁同步电机温度场分析[J]. 北京交通大学学报, 2019, 43(5): 119-125. |
LIU R F, ZHU J, CAO J C. Temperature field analysis of silicon steel and amorphous on permanent magnet synchronous motors used in electrical vehicles?[J]. Journal of Beijing Jiaotong University, 2019, 43(5): 119-125 (in Chinese). | |
23 | LI L Q, ZHANG Z R, BIAN W X, et al. Development of high-efficiency PMSG with extremely thin stator lamination materials for electric-propulsion UAV[J]. IEEE Transactions on Magnetics, 2023, 59(11): 8103505. |
24 | 张卓然, 张健, 李涵琪, 等. 一种双性能磁阻电机高速转子铁芯热处理装置及方法: CN110912362B[P]. 2021-06-22. |
ZHANG Z R, ZHANG J, LI H Q, et al. A heat treatment device and method for rotor of the high-speed reluctance machines: CN110912362B[P]. 2021-6-22 (in Chinese). | |
25 | 范坚坚, 吴建华. 计及齿槽极间隔断Halbach型磁钢的PMSM气隙磁场解析分析[J]. 中国电机工程学报, 2010, 30(12): 98-105. |
FANG J J, WU J H. Analytical solution and analysis of airgap magnetic field of PMSM with partition-between-poles Halbach magnet considering effect of slottig[J]. Proceedings of the CSEE, 2010, 30(12): 98-105 (in Chinese). | |
26 | JUNG D S, KIM Y H, LEE U H, et al. Optimum design of the electric vehicle traction motor using the hairpin winding[C]∥2012 IEEE 75th Vehicular Technology Conference (VTC Spring). Piscataway: IEEE Press, 2012: 1-4. |
27 | ZHANG J, JIANG H Z, ZHANG Z R, et al. AC loss analytic method and optimization of litz winding for high-speed electrical machines[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3330-3341. |
28 | BARDALAI A, GERADA D, GOLOVANOV D, et al. Reduction of winding AC losses by accurate conductor placement in high frequency electrical machines[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 183-193. |
29 | SIMPSON N, MELLOR P H. Additive manufacturing of shaped profile windings for minimal AC loss in electrical machines[C]∥2018 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway: IEEE Press, 2018: 5765-5772. |
30 | ZHANG J, JIANG H, ZHANG Z. Research on transposed rectangular windings based on additive manufacturing technology for electrical machines with concentrated windings[J]. IEEE Transactions on Transportation Electrification. 2024, 10(4): 9739-9747. |
31 | 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1752. |
SHENG K, REN N, XU H Y. A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1752 (in Chinese). | |
32 | GENG W W, ZHANG Z R, LI Q. Analysis and experimental verification of a conventional inverter with output LC filter to drive ironless stator axial-flux PM motor[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2600-2610. |
33 | 王鸿雁, 邓焰, 赵荣祥, 等. 飞跨电容多电平逆变器开关损耗最小PWM方法[J]. 中国电机工程学报, 2004, 24(8): 51-55. |
WANG H Y, DENG Y, ZHAO R X, et al. Switching loss minimizing PWM method for flying capacitor multilevel inverter[J]. Proceedings of the CSEE, 2004, 24(8): 51-55 (in Chinese). | |
34 | 王锋, 赵坚, 张琪凯. 陶瓷气凝胶柔性隔热材料应用于航空航天的研究进展[J]. 聚酯工业, 2024, 37(5): 70-73. |
WANG F, ZHAO J, ZHANG Q K. Ceramic aerogel flexible insulation material applied to the research progress of aerospace[J]. Polyester Industry, 2024, 37(5): 70-73 (in Chinese). | |
35 | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
36 | BENNETT J W, ATKINSON G J, MECROW B C, et al. Fault-tolerant design considerations and control strategies for aerospace drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2049-2058. |
37 | GAO H M, ZHANG Z R, LIU Y, et al. Development and analysis of dual three-phase PMSM with phase-shifted hybrid winding for aircraft electric propulsion application[J]. IEEE Transactions on Transportation Electrification, 2024, 10(3): 6497-6508. |
38 | JACK A G, MECROW B C, DICKINSON P G, et al. Permanent magnet machines with powdered iron cores and pre-pressed windings[C]∥Conference Record of the 1999 IEEE Industry Applications Conference. Piscataway: IEEE Press, 2002: 97-103. |
39 | LI H D, KLONTZ K W, FERRELL V E, et al. Thermal models and electrical machine performance improvement using encapsulation material[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1063-1069. |
40 | ZHANG F Y, GERADA D, XU Z Y, et al. Back-iron extension thermal benefits for electrical machines with concentrated windings[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 1728-1738. |
41 | ZHAO H, ZHANG X C, ZHANG F Y, et al. A comprehensive review and experimental investigation on heat pipes application in electrical machines[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2267-2281. |
42 | BRADFORD M. The application of heat pipes to cooling rotating electrical machines[C]∥1989 Fourth International Conference on Electrical Machines and Drives. London: IET, 1989: 145-149. |
43 | ZHAO H, ZHANG X C, LI J, et al. An advanced propulsion motor with enhanced winding cooling system for a solar-powered aircraft[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 2034-2044. |
44 | WU F, EL-REFAIE A M, AL-QARNI A. Additively manufactured hollow conductors integrated with heat pipes: design tradeoffs and hardware demonstration[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 3632-3642. |
45 | Aerospace SAE. Liquid cooling system: SAE AIR1811[R]. Warrendale: SAE International, 2015. |
46 | 王佩广, 刘永绩, 王浚. 高超声速飞行器综合热管理系统方案探讨[J]. 中国工程科学, 2007, 9(2): 44-48. |
WANG P G, LIU Y J, WANG J. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle[J]. Strategic Study of CAE, 2007, 9(2): 44-48 (in Chinese). | |
47 | STREIFINGER H. Fuel/oil system thermal management in aircraft turbine engines[C]∥RTO Meeting Proceedings, 1999: 12.1-12.10. |
48 | 李国权. 航空发动机滑油系统的现状及未来发展[J]. 航空发动机, 2011, 37(6): 49-52, 62. |
LI G Q. Present and future of aeroengin oil system[J]. Aeroengine, 2011, 37(6): 49-52, 62 (in Chinese). | |
49 | KELLERMANN H, HABERMANN A L, VRATNY P C, et al. Assessment of fuel as alternative heat sink for future aircraft[J]. Applied Thermal Engineering, 2020, 170: 114985. |
50 | DONG C F, QIAN Y P, ZHANG Y J, et al. A review of thermal designs for improving power density in electrical machines[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1386-1400. |
51 | BOGLIETTI A, CAVAGNINO A, STATON D, et al. Evolution and modern approaches for thermal analysis of electrical machines[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 871-882. |
52 | ULBRICH S, KOPTE J, PROSKE J. Cooling fin optimization on a TEFC electrical machine housing using a 2-D conjugate heat transfer model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1711-1718. |
53 | 陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4): 75-85. |
TAO D J, PAN B, GE B J, et al. Research and development of key technologies of electric vehicle drive motor[J]. Electric Machines and Control, 2023, 27(4): 75-85 (in Chinese). | |
54 | MESALHY O, RATH C, RINI D, et al. A parametric fin structure design study for cooling aerospace electro-mechanical actuators with high-speed axial fans[J]. Heat and Mass Transfer, 2020, 56(5): 1565-1577. |
55 | 徐金全, 林华鹏, 郭宏. 航空电推进电机多层波浪形拓扑及散热设计方法[J]. 北京航空航天大学学报, 2024, 50(6): 1806-1818. |
XU J Q, LIN H P, GUO H. Multi-layer wave-shaped topology and thermal design method for aero-electric propulsion motors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): 1806-1818 (in Chinese). | |
56 | YI X, SANCHEZ R, HARAN K, et al. Self-pumped air-cooling design for a high-speed high-specific-power motor[C]∥2018 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2018: 274-279. |
57 | XU Z, GALEA M, TIGHE C, et al. Mechanical and thermal management design of a motor for an aircraft wheel actuator[C]∥2014 17th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2014: 3268-3273. |
58 | 陈祖涛, 余中军, 付佳, 等. 航空永磁电机风冷-热管复合冷却技术研究[J]. 电机与控制学报, 2022, 26(4): 18-27, 37. |
CHEN Z T, YU Z J, FU J, et al. Research on air-heat pipe coupling cooling technology of aerospace permanent magnet motor[J]. Electric Machines and Control, 2022, 26(4): 18-27, 37 (in Chinese). | |
59 | HALL D L, CHIN J C, ANDERSON A D, et al. Development of a maxwell X-57 high lift motor reference design[C]∥2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2019: 1-24. |
60 | 李涵琪, 张卓然, 李进才, 等. 航空自通风冷三级式无刷发电机热建模与温度分布特性研究[J]. 中国电机工程学报, 2024. DOI: 10.13334/j.0258-8013.pcsee.240818 . |
LI H Q, ZHANG Z R, LI J C, et al. Research on the Thermal Modeling and Temperature Distribution Characteristics of the Aircraft Self ventilated Wound Rotor Synchronous Generator[J]. Proceedings of the CSEE, 2024. DOI: 10.13334/j.0258-8013.pcsee.240818 (in Chinese). | |
61 | SUGDEN G B. Oil-cooled a.c. generators for aircraft—present trends[J]. Students Quarterly Journal, 1970, 40(160): 128. |
62 | 林佳, 王建华. 超声速飞行器鼻锥空间气动热特性数值研究[J]. 航空动力学报, 2014, 29(10): 2340-2347. |
LIN J, WANG J H. Numerical investigation on space aero-thermodynamic characteristics of nose cone of supersonic flight[J]. Journal of Aerospace Power, 2014, 29(10): 2340-2347 (in Chinese). | |
63 | ASSAAD B, MIKATI K, TRAN T V, et al. Experimental study of oil cooled induction motor for hybrid and electric vehicles[C]∥2018 XIII International Conference on Electrical Machines (ICEM). Piscataway: IEEE Press, 2018: 1195-1200. |
64 | DRLIK M F, SECUNDE R R. High temperature, wide-speed range, oil-cooled, 30 kVA generating system[J]. IEEE Transactions on Aerospace, 1963, 1(2): 826-837. |
65 | LI H Q, ZHANG Z R, ZHANG J, et al. Modeling and evaluation of fluid flow resistance characteristics of the cooling channel in the aircraft oil-cooled electric machine[J]. IEEE Transactions on Transportation Electrification, 2024, 10(3): 5794-5804. |
66 | HUANG Z, NATEGH S, LASSILA V, et al. Direct oil cooling of traction motors in hybrid drives[C]∥2012 IEEE International Electric Vehicle Conference. Piscataway: IEEE Press, 2012: 1-8. |
67 | 李进才, 李涵琪, 张卓然, 等. 航空油冷三级式无刷发电机流固耦合传热研究及散热优化[J]. 电工技术学报, 2024, 39(22): 7030-7044. |
LI J C, LI H Q, ZHANG Z R, et al. Research on fluid-solid coupling heat transfer and optimization of heat dissipation in the aircraft oil-cooled wound rotor synchronous generator[J]. Transactions of China Electrotechnical Society, 2024, 39(22): 7030-7044 (in Chinese). | |
68 | LIU C, XU Z Y, GERADA D, et al. Experimental investigation on oil spray cooling with hairpin windings[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7343-7353. |
69 | 陆嘉伟, 张卓然, 李进才, 等. 电推进飞机移相双绕组永磁电机特性分析[J]. 航空学报, 2022, 43(5): 325230. |
LU J W, ZHANG Z R, LI J C, et al. Characteristic analysis of dual-winding permanent magnet synchronous machine with phase-shifted windings for electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 325230 (in Chinese). | |
70 | XU Z, LA ROCCA A, PICKERING S J, et al. Mechanical and thermal design of an aeroengine starter/generator[C]∥2015 IEEE International Electric Machines & Drives Conference (IEMDC). Piscataway: IEEE Press, 2015: 1607-1613. |
71 | GOLOVANOV D, GERADA D, SALA G, et al. 4-MW class high-power-density generator for future hybrid-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2952-2964. |
72 | CAMILLERI R, HOWEY D A, MCCULLOCH M D. Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 82-91. |
73 | 张健, 胡光源, 张卓然, 等. 一种用于磁阻电机的绕组直接冷却装置及循油控制方法:CN117639363A[P]. 2024-03-01. |
ZHANG J, HU G Y, ZHANG Z R, et al. A winding direct cooling device and oil circulation control method for reluctance machines:CN117639363A[P]. 2024-03-01 (in Chinese). | |
74 | LA ROCCA A, PICKERING S J, EASTWICK C, et al. Enhanced cooling for an electric starter-generator for aerospace application[C]∥7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014). London: IET, 2014: 1-7. |
75 | 王晓远, 高鹏. 电动汽车用油内冷永磁轮毂电机三维温度场分析[J]. 电机与控制学报, 2016, 20(3), 36-42. |
WANG X Y, GAO P. Analysis of 3-D temperature field of in-wheel motor with inner-oil cooling for electric vehicle[J]. Electric Machines and Control, 2016, 20(3), 36-42 (in Chinese). | |
76 | GAI Y H, CHONG Y C, ADAM H, et al. Thermal analysis of an oil-cooled shaft for a 30 000 r/min automotive traction motor[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6053-6061. |
77 | WANG R Y, FAN X G, LI D W, et al. Comparison of heat transfer characteristics of the hollow-shaft oil cooling system for high-speed permanent magnet synchronous machines[J]. IEEE Transactions on Industry Applications, 2022, 58(5): 6081-6092. |
78 | ZHANG J, ZHU X, ZHANG Z, et al. AC loss calculation and analysis of hollow conductor for doubly salient brushless DC generator[J]. IEEE Transactions on Magnetics, 2022, 58(8): 1-5. |
79 | CHEN X, WANG J B, GRIFFO A, et al. Thermal modeling of hollow conductors for direct cooling of electrical machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 895-905. |
80 | JARITZ M, HILLERS A, BIELA J. General analytical model for the thermal resistance of windings made of solid or litz wire[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 668-684. |
81 | GENG W W, ZHU T, LI Q, et al. Windings indirect liquid cooling method for a compact outer-rotor PM starter/generator with concentrated windings[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3282-3293. |
82 | ZHANG J, ZHANG Z R, XIA Y W, et al. Thermal analysis and management for doubly salient brushless DC generator with flat wire winding[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 1110-1119. |
83 | TAN H, FAN X G, LI D W, et al. Additively manufactured winding design for thermal improvement of an oil-cooled axial flux permanent magnet machine[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 1911-1922. |
84 | 王润宇, 李大伟, 范兴纲, 等. 增材制造技术在电机中的应用综述[J]. 中国电机工程学报, 2022, 42(1): 385-405. |
WANG R Y, LI D W, FAN X G, et al. A review on application of additive manufacturing technology in electrical machines[J]. Proceedings of the CSEE, 2022, 42(1): 385-405 (in Chinese). | |
85 | IYENGAR M, BAR-COHEN A. Design for manufacturability of SISE parallel plate forced convection heat sinks[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 150-158. |
86 | DE LEGARRA M S. Thermal and hydraulic design of water-based cooling systems for electrical machines[D]. Pamplona: Universidad de Navarra, 2017. |
87 | MAYOR J R, SEMIDEY S A. Systems and methods for direct winding cooling of electric machines: US9331553[P]. 2016-05-03. |
88 | KLONOWSKI T, SERGHINE C, VIVE L P D. Electric machine with forced demagnetization device for permanent magnets: FR3091060A1[P]. 2020-06-26. |
89 | MUSALLAM M, ACARNLEY P P, JOHNSON C M, et al. Power electronic device temperature estimation and control in pulsed power and converter applications[J]. Control Engineering Practice, 2008, 16(12): 1438-1442. |
90 | JAHNS T M, SARLIOGLU B. The incredible shrinking motor drive: Accelerating the transition to integrated motor drives[J]. IEEE Power Electronics Magazine, 2020, 7(3): 18-27. |
91 | WROBEL R. A technology overview of thermal management of integrated motor drives-electrical machines[J]. Thermal Science and Engineering Progress, 2022, 29: 101222. |
92 | 孟繁鑫, 王瑞琪, 高赞军, 等. 多电飞机电动环境控制系统关键技术研究[J]. 航空科学技术, 2018, 29(2): 1-8. |
MENG F X, WANG R Q, GAO Z J, et al. Rescarch of key technology for the more electrical aircraft electric environmental control system[J]. Aeronautical Science & Technology, 2018, 29(2): 1-8 (in Chinese). | |
93 | 阚银辉, 叶志锋, 周力, 等. 电动燃油泵驱动电机浸油冷却性能数值模拟[J]. 航空发动机, 2024, 50(2): 108-113. |
KAN Y H, YE Z F, ZHOU L, et al. Numerical simulation of oil immersion cooling performance of electric fuel pump driving motor[J]. Aeroengine, 2024, 50(2): 108-113 (in Chinese). | |
94 | FRED KLAASS R M, MCFADDEN B. More-electric aircraft integrated power unit designed for dual use[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 1994: 138-153. |
95 | 于立, 张卓然, 张健, 等. 多电发动机内装式高速起动发电机研究与实践[J]. 中国电机工程学报, 2020, 40(14): 4615-4628. |
YU L, ZHANG Z R, ZHANG J, et al. Study and implementation on high-speed starter/generator for more electric engine application[J]. Proceedings of the CSEE, 2020, 40(14): 4615-4628 (in Chinese). |
/
〈 |
|
〉 |