ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aircraft aerodynamic performance prediction and inverse design based on a gated diffusion model
Received date: 2024-09-10
Revised date: 2024-10-12
Accepted date: 2024-11-15
Online published: 2024-11-29
To address the convergence challenges faced by traditional deep learning models in the inverse design of three-dimensional aircraft under supersonic conditions, a generative gated Denoising Diffusion Probabilistic Model (DDPM) based on a priori prediction model guidance is proposed. This model integrates aerodynamic performance prediction and aircraft shape inverse design through the gating mechanism, aiming to enhance both prediction accuracy and design efficiency while overcoming the training difficulties encountered in handling highly nonlinear problems with traditional models. A Deep Neural Network (DNN) is constructed to serve as the a priori prediction model to obtain preliminary aerodynamic performance predictions and geometric shape estimates. Based on these initial results, the gated DDPM uses the predictive information from the DNN and employs diffusion and reverse diffusion processes to generate design outcomes. In this process, Gaussian noise is gradually added during the diffusion phase, and data distribution is restored in the reverse diffusion phase. This mechanism enhances both convergence and predictive accuracy in complex aerodynamic design tasks. The effectiveness of the gated DDPM is validated using an axisymmetric aircraft dataset. Compared to the prior model, the gated DDPM can control the relative error of most aerodynamic parameters within 0.75% in inverse design tasks, significantly outperforming the DNN model. The results demonstrate that the proposed method can effectively enhance the accuracy of aerodynamic performance prediction and shape inverse design in aircraft design.
Jinhua LOU , Rongqian CHEN , Jiaqi LIU , Yue BAO , Hao WU , Yancheng YOU . Aircraft aerodynamic performance prediction and inverse design based on a gated diffusion model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(10) : 631183 -631183 . DOI: 10.7527/S1000-6893.2024.31183
1 | 王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1486-1495. |
WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1486-1495 (in Chinese). | |
2 | 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1): 244-254. |
ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method?[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 244-254 (in Chinese). | |
3 | 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 89-101. |
ZHAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(10): 89-101 (in Chinese). | |
4 | 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报, 2008, 28(1): 187-190. |
LI J Z, GAO Z H, ZHAN H. Study on inverse design method of airfoil based on optimizati on of target pressure distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 187-190 (in Chinese). | |
5 | DULIKRAVICH G. Shape inverse design and optimization for three-dimensional aerodynamics[C]∥ 33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995: 695. |
6 | YU Y, LYU Z J, XU Z L, et al. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization?[J]. Aerospace Science and Technology, 2018, 75: 183-199. |
7 | 吴明雨, 陈志华, 邱志明, 等. 条件生成对抗网络的翼型反设计方法[J]. 宇航学报, 2023, 44(10): 1512-1521. |
WU M Y, CHEN Z H, QIU Z M, et al. An inverse design method of airfoil using conditional generative adversarial network?[J]. Journal of Astronautics, 2023, 44(10): 1512-1521 (in Chinese). | |
8 | 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596. |
CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596 (in Chinese). | |
9 | LI J C, DU X S, MARTINS J R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences, 2022, 134: 100849. |
10 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
11 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics?[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42?(4): 524689 (in Chinese). | |
12 | 孙刚, 王聪, 王立悦, 等. 人工智能在气动设计中的应用与展望[J]. 民用飞机设计与研究, 2021(3): 1-9, 147. |
SUN G, WANG C, WANG L Y, et al. Application and prospect of artificial intelligence in aerodynamic design[J]. Civil Aircraft Design & Research, 2021(3): 1-9, 147 (in Chinese). | |
13 | 柳家齐, 陈荣钱, 楼锦华, 等. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828. |
LIU J Q, CHEN R Q, LOU J H, et al. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828 (in Chinese). | |
14 | 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023, 44(5): 136-152. |
ZHAO H, GAO Z H, XIA L. Aerodynamic shape design optimization method based on novel high-dimensional surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 136-152 (in Chinese). | |
15 | WANG Y Q, LIU T Y, ZHANG D, et al. Dual-convolutional neural network based aerodynamic prediction and multi-objective optimization of a compact turbine rotor?[J]. Aerospace Science and Technology, 2021, 116: 106869. |
16 | 王超杰, 何磊, 李川, 等. 基于注意力机制的翼型反设计方法[J]. 航空动力学报, 2025, 40(1): 20230106. |
WANG C J, HE L, LI C,et al. Airfoil reverse design method based on self-attention mechanism?[J]. Journal of Aerospace Power, 2025, 40(1): 20230106 (in Chinese). | |
17 | SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3): 993-1003. |
18 | CHEN S S, QIU J Y, YANG H, et al. Deep learning for inverse design of low-boom supersonic configurations[J]. Advances in Aerodynamics, 2023, 5(1): 13. |
19 | KUMAR A, VADLAMANI N R. Inverse design of airfoils using convolutional neural network and deep neural network[C]?∥ASME 2021 Gas Turbine India Conference. New York: ASME 2021. |
20 | TYAN M, CHOI C K, NGUYEN T A, et al. Rapid airfoil inverse design method with a deep neural network and hyperparameter selection[J]. International Journal of Aeronautical and Space Sciences, 2023, 24(1): 33-46. |
21 | WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field prediction with sparse data[J]. Chinese Journal of Aeronautics, 2022, 35(1): 470-484. |
22 | YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820. |
23 | WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: Encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Computational Design and Engineering, 2023, 10(4): 1350-1362. |
24 | HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851. |
25 | HO J, SAHARIA C, CHAN W, et al. Cascaded diffusion models for high fidelity image generation[J]. Journal of Machine Learning Research, 2022, 23(1): 2249-2281. |
26 | XIA B, ZHANG Y L, WANG S Y, et al. DiffIR: efficient diffusion model for image restoration?[C]?∥2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 13049-13059. |
27 | YANG H, JUNPENG Z, CHUNYU G, et al. A flow field super-resolution reconstruction method based on diffusion model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2309-2320. |
28 | SHU D L, LI Z J, BARATI FARIMANI A. A physics-informed diffusion model for high-fidelity flow field reconstruction?[J]. Journal of Computational Physics, 2023, 478: 111972. |
29 | 徐志昂, 骆嘉晨, 丁相贵, 等. 基于扩散模型的高阶拓扑绝缘体实时设计[J]. 力学学报, 2024, 56(7): 1840-1848. |
XU Z A, LUO J C, DING X G, et al. Real-time design of higher-order topological insulators by diffusion model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1840-1848 (in Chinese). | |
30 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000- 6010. |
31 | SOOY T J, SCHMIDT R Z. Aerodynamic predictions, comparisons, and validations using missile DATCOM (97) and aeroprediction 98 (AP98)[J]. Journal of Spacecraft and Rockets, 2005, 42(2): 257-265. |
32 | YAN X H, ZHU J H, KUANG M C, et al. Aerodynamic shape optimization using a novel optimizer based on machine learning techniques[J]. Aerospace Science and Technology, 2019, 86: 826-835. |
33 | WU P, YUAN W Y, JI L L, et al. Missile aerodynamic shape optimization design using deep neural networks[J]. Aerospace Science and Technology, 2022, 126: 107640. |
34 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
/
〈 |
|
〉 |