Electronics and Electrical Engineering and Control

Attitude control schemes of yaw steering with front and back pointing to the sun alternately

  • Xi WANG ,
  • Changqing CHEN ,
  • Xiaoping XU ,
  • Zhen HUANG
Expand
  • 1.Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
    2.Beijing Institute of Control Engineering,Beijing 100094,China

Received date: 2024-05-13

  Revised date: 2024-07-29

  Accepted date: 2024-09-23

  Online published: 2024-10-08

Supported by

National Level Project

Abstract

In the traditional yaw-steering mode, spacecraft swings back and forth around the yaw axis within a certain angle range, causing the spacecraft’s front or back to be always exposed to direct sunlight, resulting in additional weight and power consumption costs for the thermal design of extravehicular equipment. A yaw-steering attitude control strategy with front and back pointing to the sun alternately is proposed, providing spacecraft with a uniformly exposed thermal environment. This not only simplifies the thermal design of extravehicular equipment, but also improves the reliability of the in-orbit equipment sensitive to temperature range fluctuations. Three attitude control strategies for yaw-steering with front and back pointing to the sun alternately are compared in terms of power generation and propellant consumption. The complementary-angle control strategy with the optimal comprehensive index is successfully applied to the Tianzhou-1 cargo spacecraft.

Cite this article

Xi WANG , Changqing CHEN , Xiaoping XU , Zhen HUANG . Attitude control schemes of yaw steering with front and back pointing to the sun alternately[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 330673 -330673 . DOI: 10.7527/S1000-6893.2024.30673

References

1 胡军, 张锦江, 宗红. 我国载人航天器制导导航与控制技术发展成就及展望[J]. 航天器工程202231(6): 139-146.
  HU J, ZHANG J J, ZONG H. Development achievements and prospects of guidance, navigation and control technology for China manned spacecraft[J]. Spacecraft Engineering202231(6): 139-146 (in Chinese).
2 MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS satellite geometry and attitude models[J]. Advances in Space Research201556(6): 1015-1029.
3 BAR-SEVER Y E. A new model for GPS yaw attitude[J]. Journal of Geodesy199670(11): 714-723.
4 KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J]. GPS Solutions200913(1): 1-12.
5 KUANG D, DESAI S, SIBOIS A. Observed features of GPS Block IIF satellite yaw maneuvers and corresponding modeling[J]. GPS Solutions201721(2): 739-745.
6 DILSSNER F, SPRINGER T, GIENGER G, et al. The GLONASS-M satellite yaw-attitude model[J]. Advances in Space Research201147(1): 160-171.
7 MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy201589(3): 283-297.
8 HAUSCHILD A, STEIGENBERGER P, RODRIGUEZ-SOLANO C. Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki[J]. GPS Solutions201216(1): 127-133.
9 ZHAO Q L, WANG C, GUO J, et al. Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis[J]. GPS Solutions201722(1): 4.
10 李晓杰, 刘晓萍, 辛洁. 北斗卫星的姿态偏航控制模式及特点分析[J]. 测绘地理信息201944(5): 69-72.
  LI X J, LIU X P, XIN J. Attitude control modes and characteristic analysis for Beidou Satellites[J]. Journal of Geomatics201944(5): 69-72 (in Chinese).
11 谭红力, 郭睿, 谢金石. 卫星偏航控制模式设计及其对光压摄动影响分析[C]∥第八届中国卫星导航学术年会论文集. 上海: 中国卫星导航系统管理办公室学术交流中心, 2017: 913-919.
  TAN H L, GUO R, XIE J S. Design yaw control modes of the navigation satellite and analyze the solar radiation pressure[C]∥8th China Satellite Navigarion Academic Annual Conference. Shanghai: China Satellite Navigation Office Academic Exchange Center, 2017: 913-919.
12 卢威, 黄家荣, 钟奇. 载人运输飞船多模式和姿态的外热流[J]. 中国空间科学技术201131(1): 25-32.
  LU W, HUANG J R, ZHONG Q. External heat flux on manned transport spacecraft with multiple modes and attitudes[J]. Chinese Space Science and Technology201131(1): 25-32 (in Chinese).
13 王曦, 苏晏, 石泳, 等. 一种基于首发货运飞船的姿态控制试验方案研究[J]. 载人航天201521(1): 37-43.
  WANG X, SU Y, SHI Y, et al. Study on scheme of attitude control experiment based on the first cargo spaceship[J]. Manned Spaceflight201521(1): 37-43 (in Chinese).
14 张志方, 董文强, 张锦江, 等. 控制力矩陀螺在天宫一号目标飞行器姿态控制上的应用[J]. 空间控制技术与应用201137(6): 52-59.
  ZHANG Z F, DONG W Q, ZHANG J J, et al. The application of control moment gyro in attitude control of Tiangong-1 spacecraft[J]. Aerospace Control and Application201137(6): 52-59 (in Chinese).
15 于新刚, 黄家荣, 张立, 等. 神舟九号热控设计及在轨工作评价[J]. 载人航天201319(2): 25-29, 69.
  YU X G, HUANG J R, ZHANG L, et al. Thermal design and on-orbit performance evaluation of Shenzhou 9 spaceship[J]. Manned Spaceflight201319(2): 25-29, 69 (in Chinese).
16 朱智春, 赵和明, 罗斌. 金属膜片贮箱的膜片变形分析[J]. 推进技术199920(5): 77-79.
  ZHU Z C, ZHAO H M, LUO B. Deformation analysis of metal diaphragm for positive expulsion tanks[J]. Journal of Propulsion Technology199920(5): 77-79 (in Chinese).
17 刘海娃, 袁肖肖, 汤建华. 某航天器发动机机组热分析及在轨应用研究[J]. 载人航天202026(4): 529-536.
  LIU H W, YUAN X X, TANG J H. Thermal simulation and on-orbit thermal study of one thruster unit in a spacecraft[J]. Manned Spaceflight202026(4): 529-536 (in Chinese).
18 刘海娃, 汤建华. 浮动断接器热控设计与仿真[J]. 火箭推进201541(1): 23-28.
  LIU H W, TANG J H. Design and simulation of thermal control for floating coupling[J]. Journal of Rocket Propulsion201541(1): 23-28 (in Chinese).
19 刘启海, 龚德铸, 华宝成, 等. 新一代空间交会对接光学成像敏感器[J]. 空间控制技术与应用201844(2): 56-61.
  LIU Q H, GONG D Z, HUA B C, et al. New generation camera-type rendezvous and docking sensor[J]. Aerospace Control and Application201844(2): 56-61 (in Chinese).
20 刘海娃. 载人飞船连续偏航姿态下轨控机组热控设计[J]. 火箭推进201844(5): 10-15.
  LIU H W. Thermal control design of divert thruster unit in manned spacecraft under continuous yaw attitude[J]. Journal of Rocket Propulsion201844(5): 10-15 (in Chinese).
21 贾世锦, 明章鹏, 刘建盈, 等. 空间推进系统在轨有关热控问题分析[J]. 航天器环境工程201936(2): 165-170.
  JIA S J, MING Z P, LIU J Y, et al. Analysis on the thermal control problems of space booster sub-system in orbit[J]. Spacecraft Environment Engineering201936(2): 165-170 (in Chinese).
22 张士峰, 钱山, 李鹏奎. 刚体航天器的最小能量姿态机动最优控制研究[J]. 宇航学报200930(4): 1504-1509, 1515.
  ZHANG S F, QIAN S, LI P K. Study on the minimal energy maneuvering control of a rigid spacecraft with momentum transfer[J]. Journal of Astronautics200930(4): 1504-1509, 1515 (in Chinese).
23 赵振平, 王林林, 周荻, 等. 空间飞行器大角度姿态机动控制能量优化[J]. 哈尔滨工业大学学报202052(12): 8-14.
  ZHAO Z P, WANG L L, ZHOU D, et al. Fuel optimization for large angle attitude maneuver control of spacecraft[J]. Journal of Harbin Institute of Technology202052(12): 8-14 (in Chinese).
24 王卓, 徐瑞, 李朝玉, 等. 航天器零推进剂姿态机动启发式规划方法[J]. 宇航学报202142(12): 1532-1541.
  WANG Z, XU R, LI C /Z)Y, et al. Heuristic planning method of spacecraft zero propellant maneuver[J]. Journal of Astronautics202142(12): 1532-1541 (in Chinese).
25 冉德超, 倪庆, 绳涛, 等. 基于自适应二阶终端滑模的航天器有限时间姿态机动算法[J]. 国防科技大学学报201739(1): 6-10.
  RAN D C, NI Q, SHENG T, et al. Spacecraft attitude maneuver algorithm design based on adaptive second-order terminal sliding mode[J]. Journal of National University of Defense Technology201739(1): 6-10 (in Chinese).
26 黄成, 王岩, 邓立为. 航天器姿态大角度机动有限时间控制[J]. 宇航学报202041(8): 1058-1066.
  HUANG C, WANG Y, DENG L W. Finite-time control for spacecraft attitude large-angle maneuver[J]. Journal of Astronautics202041(8): 1058-1066 (in Chinese).
27 宝音贺西, 印明威. 敏捷卫星时间最优姿态机动研究综述[J]. 动力学与控制学报202018(4): 1-11.
  BAO Y, YIN M W. Review on time-optimal reorientation of agile satellites[J]. Journal of Dynamics and Control202018(4): 1-11 (in Chinese).
28 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划[J]. 航空学报200728(5): 1091-1097.
  ZHONG W G, CUI P Y, CUI H T. Autonomous attitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica200728(5): 1091-1097 (in Chinese).
29 马广富, 柳明旻, 王靓玥, 等. 考虑多禁止指向区域的航天器反步姿态机动控制[J]. 宇航学报202041(8): 1042-1048.
  MA G F, LIU M M, WANG J /L)Y, et al. Spacecraft backstepping attitude control considering multiple forbidden pointing regions[J]. Journal of Astronautics202041(8): 1042-1048 (in Chinese).
30 王卓, 徐瑞, 李朝玉. 航天器复杂约束姿态机动的自主规划[J]. 航空学报202243(5): 325308.
  WANG Z, XU R, LI Z Y. Rapid attitude maneuver planning method based on progressive path transfer[J]. Acta Aeronautica et Astronautica Sinica202243(5): 325308 (in Chinese).
31 徐瑞, 朱哲, 李朝玉, 等. 航天器姿态机动规划技术研究进展[J]. 宇航学报202344(2): 155-167.
  XU R, ZHU Z, LI C /Z)Y, et al. Research progress of spacecraft attitude maneuver planning technology[J]. Journal of Astronautics202344(2): 155-167 (in Chinese).
32 DOBRINSKAYA T. An analytical solution for yaw maneuver optimization on the international space station and other orbiting space vehicles[C]∥66th International Astronautical Congress. Jerusa-lem: IAF, 2015: 175-181.
33 白明生, 金勇, 雷剑宇, 等. 天舟一号货运飞船研制[J]. 载人航天201925(2): 249-255.
  BAI M S, JIN Y, LEI J Y, et al. Research and development of Tianzhou-1 cargo spacecraft[J]. Manned Spaceflight201925(2): 249-255 (in Chinese).
Outlines

/