Reviews

Research advances on deep learning-based small object detection in UAV aerial images

  • Yiquan WU ,
  • Kang TONG
Expand
  • College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
E-mail: nuaaimage@163.com

Received date: 2024-06-20

  Revised date: 2024-08-16

  Accepted date: 2024-09-07

  Online published: 2024-09-23

Supported by

National Natural Science Foundation of China(61573183)

Abstract

Small object detection in UAV aerial images based on deep learning has a wide range of applications in military intelligence reconnaissance, battlefield surveillance and assessment, military object capture and verification, intelligent traffic management, infrastructure inspection and maintenance, disaster prevention and control, search and rescue, crop management and analysis, ecological protection and monitoring and other fields, and has become a current research hotspot in recent years. This review article gives a comprehensive and in-depth investigation on small object detection in UAV aerial images based on deep learning in the past five years. First of all, the definition and challenges of small object detection in UAV aerial images are introduced. Secondly, small object detection methods in drone aerial images are summarized in terms of discriminative feature learning, super-resolution technology, real-time lightweight detection, and other improvement ideas. Then, small object detection datasets of UAV aerial images are systematically summarized, and the performances of different algorithms are analyzed based on the VisDrone Challenge. Finally, the specific applications of small object detection in UAV aerial images in the military and civilian fields are comprehensively presented, and the potential future development directions of small object detection in UAV aerial images and some concerns about UAV aerial photography are also discussed. It is expected that this review would inspire relevant researchers to further promote the development of small object detection in UAV aerial images based on deep learning.

Cite this article

Yiquan WU , Kang TONG . Research advances on deep learning-based small object detection in UAV aerial images[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 30848 -030848 . DOI: 10.7527/S1000-6893.2024.30848

References

1 LEE G, HONG S, CHO D. Self-supervised feature enhancement networks for small object detection in noisy images[J]. IEEE Signal Processing Letters202128: 1026-1030.
2 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报202344(5): 326738.
  MAO G T, DENG T M, YU N J. Object detection in UAV images based on multi-scale split attention[J]. Acta Aeronautica et Astronautica Sinica202344(5): 326738 (in Chinese).
3 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报202445(6): 028822.
  LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica202445(6): 028822 (in Chinese).
4 ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]?∥2019 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2019: 118-126.
5 李子豪, 王正平, 贺云涛. 基于自适应协同注意力机制的航拍密集小目标检测算法[J]. 航空学报202344(13): 327944.
  LI Z H, WANG Z P, HE Y T. Aerial-photography dense small target detection algorithm based on adaptive cooperative attention mechanism[J]. Acta Aeronautica et Astronautica Sinica202344(13): 327944 (in Chinese).
6 宋玉存, 葛泉波, 朱军龙, 等. 基于梯度差自适应学习率优化的改进YOLOX目标检测算法[J]. 航空学报202344(14): 327951.
  SONG Y C, GE Q B, ZHU J L, et al. Improved YOLOX object detection algorithm based on gradient difference adaptive learning rate optimization[J]. Acta Aeronautica et Astronautica Sinica202344(14): 327951 (in Chinese).
7 刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报202048(3): 590-601.
  LIU Y, LIU H Y, FAN J L, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica202048(3): 590-601 (in Chinese).
8 TONG K, WU Y Q, ZHOU F. Recent advances in small object detection based on deep learning: A review[J]. Image and Vision Computing202097: 103910.
9 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理202136(3): 391-417.
  GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J], Journal of Data Acquisition and Processing202136(3): 391-417 (in Chinese).
10 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报202142(7): 024691.
  LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica202142(7): 024691 (in Chinese).
11 CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: Survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202345(11): 13467-13488.
12 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报202328(9): 2587-2615.
  PAN X Y, JIA N X, MU Y Z, et al. Survey of small object detection[J]. Journal of Image and Graphics202328(9): 2587-2615 (in Chinese).
13 TONG K, WU Y Q. Deep learning-based detection from the perspective of small or tiny objects: A survey[J]. Image and Vision Computing2022123: 104471.
14 童康, 吴一全. 基于深度学习的小目标检测基准研究进展[J]. 电子学报202452(3): 1016-1040.
  TONG K, WU Y Q. Research advances on deep learning based small object detection benchmarks[J]. Acta Electronica Sinica202452(3): 1016-1040 (in Chinese).
15 袁翔, 程塨, 李戈, 等. 遥感影像小目标检测研究进展[J]. 中国图象图形学报202328(6): 1662-1684.
  YUAN X, CHENG G, LI G, et al. Progress in small object detection for remote sensing images[J]. Journal of Image and Graphics202328(6): 1662-1684 (in Chinese).
16 王辉, 贾自凯, 金忍, 等. 无人机视觉引导对接过程中的协同目标检测[J]. 航空学报202243(1): 324854.
  WANG H, JIA Z K, JIN R, et al. Cooperative object detection in UAV-based vision-guided docking[J]. Acta Aeronautica et Astronautica Sinica202243(1): 324854 (in Chinese).
17 梁栋, 高赛, 孙涵, 等. 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报202041(9): 323733.
  LIANG D, GAO S, SUN H, et al. UAV detection in motion cameras combining kernelized correlation filters and deep learning[J]. Acta Aeronautica et Astronautica Sinica202041(9): 323733 (in Chinese).
18 MITTAL P, SINGH R, SHARMA A. Deep learning-based object detection in low-altitude UAV datasets: A survey[J]. Image and Vision Computing2020104: 104046.
19 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报202142(4): 524519.
  JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524519 (in Chinese).
20 WU X, LI W, HONG D F, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey[J]. IEEE Geoscience and Remote Sensing Magazine202210(1): 91-124.
21 OSCO L P, JUNIOR J M, RAMOS A P M, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation2021102: 102456.
22 冷佳旭, 莫梦竟成, 周应华, 等. 无人机视角下的目标检测研究进展[J]. 中国图象图形学报202328(9): 2563-2586.
  LENG J X, MO M, ZHOU Y H, et al. Recent advances in drone-view object detection[J]. Journal of Image and Graphics202328(9): 2563-2586 (in Chinese).
23 刘芳, 韩笑. 基于多尺度深度学习的自适应航拍目标检测[J]. 航空学报202243(5): 325270.
  LIU F, HAN X. Adaptive aerial object detection based on multi-scale deep learning[J]. Acta Aeronautica et Astronautica Sinica202243(5): 325270 (in Chinese).
24 ZHU Z, LIANG D, ZHANG S H, et al. Traffic-sign detection and classification in the wild[C]?∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 2110-2118.
25 TUGGENER L, ELEZI I, SCHMIDHUBER J, et al. DeepScores-a dataset for segmentation, detection and classification of tiny objects[C]∥2018 24th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2018: 3704-3709.
26 LIU Y J, YANG F B, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access20208: 145740-145750.
27 吕晓君, 向伟, 刘云鹏. 基于强化底层特征的无人机航拍图像小目标检测算法[J]. 计算机应用研究202138(5): 1567-1571.
  LVU X J, XIANG W, LIU Y P. Small object detection algorithm on UAV aerial images based on enhanced lower feature[J]. Application Research of Computers202138(5): 1567-1571 (in Chinese).
28 王殿伟, 胡里晨, 房杰, 等. 基于改进Double-Head RCNN的无人机航拍图像小目标检测算法[J]. 北京航空航天大学学报202450(7): 2141-2149.
  WANG D W, HU L C, FANG J, et al. Small target detection algorithm based on improved Double-Head RCNN for UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics202450(7): 2141-2149 (in Chinese).
29 LIANG X, ZHANG J, ZHUO L, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology202030(6): 1758-1770.
30 ZHENG Q Y, CHEN Y. Feature pyramid of bi-directional stepped concatenation for small object detection[J]. Multimedia Tools and Applications202180(13): 20283-20305.
31 SHAMSOLMOALI P, ZAREAPOOR M, YANG J, et al. Enhanced single-shot detector for small object detection in remote sensing images[C]?∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 1716-1719.
32 LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO: Small object detection on unmanned aerial vehicle perspective[J]. Sensors202020(8): 2238.
33 王鼎山, 贾世杰. 基于目标感知增强的无人机航拍目标检测[J]. 计算机工程与设计202243(7): 2071-2077.
  WANG D S, JIA S J. Object-aware enhancement based UAV aerial object detection[J]. Computer Engineering and Design202243(7): 2071-2077 (in Chinese).
34 李杨, 武连全, 杨海涛, 等. 一种无人机视角下的小目标检测算法[J]. 红外技术202345(9): 925-931.
  LI Y, WU L Q, YANG H T, et al. A small target detection algorithm from UAV perspective[J]. Infrared Technology202345(9): 925-931 (in Chinese).
35 张河山, 范梦伟, 谭鑫, 等. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J/OL]. 吉林大学学报(工学版), (2023-12-28) [2024-05-25]. .
  ZHANG H S, FAN M W, TAN X, et al. Dense small object vehicle detection in UAV aerial images using improved YOLOX[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2023-12-28) [2024-05-25]. .
36 马俊燕, 常亚楠. MFE-YOLOX: 无人机航拍下密集小目标检测算法[J]. 重庆邮电大学学报(自然科学版)202436(1): 128-135.
  MA J Y, CHANG Y N. MFE-YOLOX: Dense small target detection algorithm under UAV aerial photography[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition)202436(1): 128-135 (in Chinese).
37 潘翔, 陈前斌, 黄昂, 等. 基于改进YOLOX的无人机航拍图像小目标检测算法[J]. 南京邮电大学学报(自然科学版)202444(1): 90-100.
  PAN X, CHEN Q B, HUANG A, et al. A small target detection algorithm of UAV aerial photography images based on improved YOLOX[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition)202444(1): 90-100 (in Chinese).
38 邱昊, 钟小勇, 黄林辉, 等. 面向航拍小目标的改进YOLOv5n检测算法[J]. 电光与控制202330(10): 95-101.
  QIU H, ZHONG X Y, HUANG L H, et al. An improved YOLOv5n detection algorithm for aerial photography of small targets[J]. Electronics Optics & Control202330(10): 95-101 (in Chinese).
39 韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版)202357(6): 1224-1233.
  HAN J, YUAN X P, WANG Z, et al. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University (Engineering Science)202357(6): 1224-1233 (in Chinese).
40 刘涛, 高一萌, 柴蕊, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用202460(1): 110-121.
  LIU T, GAO Y M, CHAI R, et al. Improved YOLOv5s UAV view small target detection algorithm[J]. Computer Engineering and Applications202460(1): 110-121 (in Chinese).
41 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用202460(2): 191-199.
  WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications202460(2): 191-199 (in Chinese).
42 陈蕊, 郑华飞, 蒋鸿宇, 等. 结合仿真迁移学习和自适应融合的无人机小目标检测[J]. 小型微型计算机系统202344(8): 1743-1749.
  CHEN R, ZHENG H F, JIANG H Y, et al. Combination of simulation-based transfer learning and adaptive fusion for UAV small object detection[J]. Journal of Chinese Computer Systems202344(8): 1743-1749 (in Chinese).
43 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用202359(9): 198-206.
  XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications202359(9): 198-206 (in Chinese).
44 杨慧剑, 孟亮. 基于改进的YOLOv5的航拍图像中小目标检测算法[J]. 计算机工程与科学202345(6): 1063-1070.
  YANG H J, MENG L. A small target detection algorithm based on improved YOLOv5 in aerial image[J]. Computer Engineering & Science202345(6): 1063-1070 (in Chinese).
45 LIU Z, GAO X H, WAN Y, et al. An improved YOLOv5 method for small object detection in UAV capture scenes[J]. IEEE Access20231005(11): 14365-14374.
46 李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报202344(4): 658-666.
  LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics202344(4): 658-666 (in Chinese).
47 WANG M, YANG W Z, WANG L J, et al. FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection[J]. Journal of Visual Communication and Image Representation202390: 103752.
48 何宇豪, 易明发, 周先存, 等. 基于改进的Yolov5的无人机图像小目标检测[J]. 智能系统学报202419(3): 635-645.
  HE Y H, YI M F, ZHOU X C, et al. Small target detection in UAV image based on improved YOLOv5[J]. CAAI Transactions on Intelligent Systems202419(3): 635-645 (in Chinese).
49 SONG G, DU H W, ZHANG X Y, et al. Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention[J]. Engineering Applications of Artificial Intelligence2024128: 107455.
50 陈佳慧, 王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用202460(3): 100-108.
  CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images[J]. Computer Engineering and Applications202460(3): 100-108 (in Chinese).
51 王晓红, 胡豫. 复杂背景下的无人机图像小目标检测[J]. 计算机工程与应用202359(15): 107-114.
  WANG X H, HU Y. UAV image small object detection on complex background[J]. Computer Engineering and Applications202359(15): 107-114 (in Chinese).
52 张光华, 李聪发, 李钢硬, 等. 基于改进YOLOv7-tiny的无人机航拍图像小目标检测算法[J/OL]. 工程科学与技术, (2023-12-12) [2024-05-25]. .
  ZHANG G H, LI C F, LI G Y, et al. Small target detection algorithm for UAV aerial images based on improved YOLOv7-tiny[J/OL]. Advanced Engineering Sciences, (2023-12-12) [2024-05-25]. .
53 牛为华, 魏雅丽. 基于改进YOLOv7的航拍小目标检测算法[J]. 电光与控制202431(1): 117-122.
  NIU W H, WEI Y L. Small target detection in aerial photography images based on improved YOLOv7 algorithm[J]. Electronics Optics & Control202431(1): 117-122 (in Chinese).
54 邓天民, 程鑫鑫, 刘金凤, 等. 基于特征复用机制的航拍图像小目标检测算法[J]. 浙江大学学报(工学版)202458(3): 437-448.
  DENG T M, CHENG X X, LIU J F, et al. Small target detection algorithm for aerial images based on feature reuse mechanism[J]. Journal of Zhejiang University (Engineering Science)202458(3): 437-448 (in Chinese).
55 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用202460(6): 100-109.
  FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications202460(6): 100-109 (in Chinese).
56 HE Z, HUANG L, ZENG W J, et al. Elongated small object detection from remote sensing images using hierarchical scale-sensitive networks[J]. Remote Sensing202113(16): 3182.
57 王胜科, 任鹏飞, 吕昕, 等. 基于中心点和双重注意力机制的无人机高分辨率图像小目标检测算法[J]. 应用科学学报202139(4): 650-659.
  WANG S K, REN P F, Lü X, et al. Small target detection algorithm of UAV high resolution image based on center point and dual attention mechanism[J]. Journal of Applied Sciences202139(4): 650-659 (in Chinese).
58 刘鑫, 黄进, 杨涛, 等. 改进CenterNet的无人机小目标捕获检测方法[J]. 计算机工程与应用202258(14): 96-104.
  LIU X, HUANG J, YANG T, et al. Improved small object detection for UAV acquisition based on CenterNet[J]. Computer Engineering and Applications202258(14): 96-104 (in Chinese).
59 SHI T J, GONG J N, HU J M, et al. Feature-enhanced CenterNet for small object detection in remote sensing images[J]. Remote Sensing202214(21): 5488.
60 刘树东, 刘业辉, 孙叶美, 等. 基于倒置残差注意力的无人机航拍图像小目标检测[J]. 北京航空航天大学学报202349(3): 514-524.
  LIU S D, LIU Y H, SUN Y M, et al. Small object detection in UAV aerial images based on inverted residual attention[J]. Journal of Beijing University of Aeronautics and Astronautics202349(3): 514-524 (in Chinese).
61 JIAO L, KANG C R, DONG S F, et al. An attention-based feature pyramid network for single-stage small object detection[J]. Multimedia Tools and Applications202382(12): 18529-18544.
62 DOLORIEL C T C, CAJOTE R D. Improving the detection of small oriented objects in aerial images[C]∥ 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). Piscataway: IEEE Press, 2023: 176-185.
63 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报202445(6): 629148.
  YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629148 (in Chinese).
64 QIN H, WU Y R, DONG F M, et al. Dense sampling and detail enhancement network: Improved small object detection based on dense sampling and detail enhancement[J]. IET Computer Vision202216(4): 307-316.
65 YE T, QIN W Y, LI Y W, et al. Dense and small object detection in UAV-vision based on a global-local feature enhanced network[J]. IEEE Transactions on Instrumentation and Measurement202271: 2515513.
66 张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报202351(4): 944-955.
  ZHANG Z, YI H H, ZHENG J. Focusing on small objects detector in aerial images[J]. Acta Electronica Sinica202351(4): 944-955 (in Chinese).
67 王林, 刘景亮, 王无为. 基于空洞卷积融合Transformer的无人机图像小目标检测方法[J]. 计算机应用202444(11): 3595-3602.
  WANG L, LIU J L, WANG W W. Small target detection method in UAV images based on dilated convolution fusion Transformer[J]. Journal of Computer Applications202444(11): 3595-3602.
68 彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法[J]. 计算机工程与应用202460(5): 183-190.
  PENG Y F, ZHAO T, CHEN Y K, et al. UAV small object detection algorithm based on context information and feature refinement[J]. Computer Engineering and Applications202460(5): 183-190 (in Chinese).
69 COURTRAI L, PHAM M T, LEFèVRE S. Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks[J]. Remote Sensing202012(19): 3152.
70 RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing202012(9): 1432.
71 COURTRAI L, PHAM M T, FRIGUET C, et al. Small object detection from remote sensing images with the help of object-focused super-resolution using Wasserstein GANs[C]∥IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2020: 260-263.
72 MU J Z, LI S, LIU Z M, et al. Integration of gradient guidance and edge enhancement into super-resolution for small object detection in aerial images[J]. IET Image Processing202115(13): 3037-3052.
73 BASHIR S M A, WANG Y. Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network[J]. Remote Sensing202113(9): 1854.
74 WU J Q, XU S B. From point to region: Accurate and efficient hierarchical small object detection in low-resolution remote sensing images[J]. Remote Sensing202113(13): 2620.
75 FANG X L, HU F, YANG M, et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters2022153: 107-112.
76 BOSQUET B, CORES D, SEIDENARI L, et al. A full data augmentation pipeline for small object detection based on generative adversarial networks[J]. Pattern Recognition2023133: 108998.
77 张伟, 庄幸涛, 王雪力, 等. DS-YOLO: 一种部署在无人机终端上的小目标实时检测算法[J]. 南京邮电大学学报(自然科学版)202141(1): 86-98.
  ZHANG W, ZHUANG X T, WANG X L, et al. DS-YOLO: A real-time small object detection algorithm on UAVs[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition)202141(1): 86-98 (in Chinese).
78 SUN W, DAI L, ZHANG X R, et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence202252(8): 8448-8463.
79 HAN W X, KUERBAN A, YANG Y C, et al. Multi-vision network for accurate and real-time small object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-5.
80 AMUDHAN A N, SUDHEER A P. Lightweight and computationally faster hypermetropic convolutional neural network for small size object detection[J]. Image and Vision Computing2022119: 104396.
81 丛玉华, 何啸, 邢长达, 等. 基于无人机的轻量化小目标检测网络[J]. 弹箭与制导学报202242(6): 6-12.
  CONG Y H, HE X, XING C D, et al. Lightweight small target detection network based on UAV[J]. Journal of Projectiles, Rockets, Missiles and Guidance202242(6): 6-12 (in Chinese).
82 ZHAN W, SUN C F, WANG M C, et al. An improved Yolov5 real-time detection method for small objects captured by UAV[J]. Soft Computing202226(1): 361-373.
83 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报202344(7): 327106.
  FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica202344(7): 327106 (in Chinese).
84 刘延芳, 佘佳宇, 袁秋帆, 等. 无人机遥感图像实时小目标检测方法[J]. 航空学报202445(14): 630119.
  LIU Y F, SHE J Y, YUAN Q F, et al. Real-time small target detection networks for UAV remote sensing[J]. Acta Aeronautica et Astronautica Sinica202445(14): 630119 (in Chinese).
85 AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]?∥2022 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2022: 966-970.
86 ZHANG H, HAO C Y, SONG W R, et al. Adaptive slicing-aided hyper inference for small object detection in high-resolution remote sensing images[J]. Remote Sensing202315(5): 1249.
87 XU C, WANG J W, YANG W, et al. Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing2022190: 79-93.
88 XIONG Z X, SONG T, HE S, et al. A unified and costless approach for improving small and long-tail object detection in aerial images of traffic scenarios[J]. Applied Intelligence202353(11): 14426-14447.
89 LI Y Y, HUANG Q, PEI X, et al. Cross-layer attention network for small object detection in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 2148-2161.
90 LIANG B, SU J, FENG K K, et al. Cross-layer triple-branch parallel fusion network for small object detection in UAV images[J]. IEEE Access202311: 39738-39750.
91 HUANG S Q, LIU Q. Addressing scale imbalance for small object detection with dense detector[J]. Neurocomputing2022473: 68-78.
92 KOYUN O C, KESER R K, AKKAYA ? B, et al. Focus-and-Detect: A small object detection framework for aerial images[J]. Signal Processing: Image Communication2022104: 116675.
93 TIAN G Y, LIU J R, ZHAO H, et al. Small object detection via dual inspection mechanism for UAV visual images[J]. Applied Intelligence202252(4): 4244-4257.
94 ZHU P, WEN L, DU D, et al. VisDrone-DET2018: the vision meets drone object detection in image challenge results[C]∥European Conference on Computer Vision Workshops, 2018: 437-468.
95 ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202244(11): 7380-7399.
96 DU D, ZHANG Y, WANG Z, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]∥IEEE International Conference on Computer Vision Workshops, Piscataway: IEEE Press; 2019: 213-226.
97 DU D W, WEN L Y, ZHU P F, et al. VisDrone-DET2020: The vision meets drone object detection in image challenge results[M]∥Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 692-712.
98 CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: The vision meets drone object detection challenge results[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2847-2854.
99 HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 4165-4173.
100 DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]∥European Conference on Computer Vision. Cham: Springer, 2018: 375-391.
101 BOZCAN I, KAYACAN E. AU-AIR: A multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 8504-8510.
102 BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: A dataset for detection and tracking in aerial thermal infrared videos[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020: 1736-1745.
103 ZHANG W, LIU C S, CHANG F L, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing202012(11): 1760.
104 ZHANG H J, SUN M S, LI Q, et al. An empirical study of multi-scale object detection in high resolution UAV images[J]. Neurocomputing2021421: 173-182.
105 KIEFER B, MESSMER M, ZELL A. Diminishing domain bias by leveraging domain labels in object detection on UAVs[C]?∥2021 20th International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2021: 523-530.
106 DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]∥2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2021: 949-958.
107 XU X W, ZHANG X Y, YU B, et al. DAC-SDC low power object detection challenge for UAV applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202143(2): 392-403.
108 SUN Y M, CAO B, ZHU P F, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology202232(10): 6700-6713.
109 VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: A maritime benchmark for detecting humans in open water[C]∥2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2022: 3686-3696.
110 HE X Y, TANG Z W, DENG Y B, et al. UAV-based road crack object-detection algorithm[J]. Automation in Construction2023154: 105014.
111 JIANG L J, YUAN B X, DU J W, et al. MFFSODNet: Multiscale feature fusion small object detection network for UAV aerial images[J]. IEEE Transactions on Instrumentation Measurement202473: 3381272.
112 SHIN G, YOOUN H, SHIN D, et al. Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques[J]. Soft Computing201822(20): 6835-6844.
113 王强, 吴乐天, 王勇, 等. 基于关键点检测的红外弱小目标检测[J]. 航空学报202344(10): 328173.
  WANG Q, WU L T, WANG Y, et al. An infrared small target detection method based on key point[J]. Acta Aeronautica et Astronautica Sinica202344(10): 328173 (in Chinese).
114 张立国, 蒋轶轩, 田广军. 基于多尺度融合方法的无人机对地车辆目标检测算法研究[J]. 计量学报202142(11): 1436-1442.
  ZHANG L G, JIANG Y X, TIAN G J. Research on unmanned aerial vehicle to ground vehicle target detection algorithm based on multiscale fusion method[J]. Acta Metrologica Sinica202142(11): 1436-1442 (in Chinese).
115 MHALLA A, CHATEAU T, GAZZAH S, et al. An embedded computer-vision system for multi-object detection in traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems201920(11): 4006-4018.
116 张河山, 谭鑫, 范梦伟, 等. 无人机高空航拍视角下小尺度车辆精确检测方法[J].交通运输系统工程与信息202424(3): 299-309.
  ZHANG H S, TAN X, FAN M W, et al. Accurate detection method of small-scale vehicles from perspective of unmanned aerial vehicle high-altitude aerial photography[J]. Journal of Transportation Systems Engineering and Information Technology202424(3): 299-309.
117 ZHU J S, SUN K, JIA S, et al. Urban traffic density estimation based on ultrahigh-resolution UAV video and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201811(12): 4968-4981.
118 WANG J F, CHEN Y, DONG Z K, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications202335(10): 7853-7865.
119 WANG S Y, QU Z, LI C J, et al. BANet: Small and multi-object detection with a bidirectional attention network for traffic scenes[J]. Engineering Applications of Artificial Intelligence2023117: 105504.
120 贺拴海, 王安华, 朱钊, 等. 公路桥梁智能检测技术研究进展[J]. 中国公路学报202134(12): 12-24.
  HE S H, WANG A H, ZHU Z, et al. Research progress on intelligent detection technologies of highway bridges[J]. China Journal of Highway and Transport202134(12): 12-24 (in Chinese).
121 PENG L G, ZHANG J C, LI Y Q, et al. A novel percussion-based approach for pipeline leakage detection with improved MobileNetV2[J]. Engineering Applications of Artificial Intelligence2024133: 108537.
122 XU Z H, LIU Y X, GAN L, et al. RNGDet: Road network graph detection by transformer in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 4707612.
123 ZHENG C, PENG B C, CHEN B Q, et al. Multiscale fusion network for rural newly constructed building detection in unmanned aerial vehicle imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202215: 9160-9173.
124 刘传洋, 吴一全, 刘景景. 无人机航拍图像中电力线检测方法研究进展[J]. 中国图象图形学报202328(10): 3025-3048.
  LIU C Y, WU Y Q, LIU J J. The growth of UAV aerial images-related power lines detection: A literature review of 2023[J]. Journal of Image and Graphics202328(10): 3025-3048 (in Chinese).
125 SHARMA P, SAURAV S, SINGH S. Object detection in power line infrastructure: A review of the challenges and solutions[J]. Engineering Applications of Artificial Intelligence2024130: 107781.
126 刘传洋, 吴一全, 刘景景. 基于视觉的输电线路金具锈蚀缺陷检测方法研究进展[J]. 仪器仪表学报202445(3): 286-305.
  LIU C Y, WU Y Q, LIU J J. Research progress of vision-based rust defect detection methods for metal fittings in transmission lines[J]. Chinese Journal of Scientific Instrument202445(3): 286-305.
127 罗潇, 於锋, 彭勇. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制202250(10): 132-139.
  LUO X, YU F, PENG Y. UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control202250(10): 132-139 (in Chinese).
128 宋立业, 刘帅, 王凯, 等. 基于改进EfficientDet的电网元件及缺陷识别方法[J]. 电工技术学报202237(9): 2241-2251.
  SONG L Y, LIU S, WANG K, et al. Identification method of power grid components and defects based on improved EfficientDet[J]. Transactions of China Electrotechnical Society202237(9): 2241-2251 (in Chinese).
129 ZHAO L, ZHI L Q, ZHAO C, et al. Fire-YOLO: A small target object detection method for fire inspection[J]. Sustainability202214(9): 4930.
130 LIU W Y, REN G F, YU R S, et al. Image-adaptive YOLO for object detection in adverse weather conditions[J]. Proceedings of the AAAI Conference on Artificial Intelligence202236(2): 1792-1800.
131 YANMAZ E. Joint or decoupled optimization: Multi-UAV path planning for search and rescue[J]. Ad Hoc Networks2023138: 103018.
132 PAULIN G, SAMBOLEK S, IVASIC-KOS M. Application of raycast method for person geolocalization and distance determination using UAV images in Real-World land search and rescue scenarios[J]. Expert Systems with Applications2024237: 121495.
133 DOMOZI Z, STOJCSICS D, BENHAMIDA A, et al. Real time object detection for aerial search and rescue missions for missing persons[C]∥2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). Piscataway: IEEE Press, 2020: 519-524.
134 BO?I??-??TULI? D, MARU?I? ?, GOTOVAC S. Deep learning approach in aerial imagery for supporting land search and rescue missions[J]. International Journal of Computer Vision2019127(9): 1256-1278.
135 XU J H, FAN X T, JIAN H D, et al. YoloOW: A spatial scale adaptive real-time object detection neural network for open water search and rescue from UAV aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing202462: 5623115.
136 CHEN Y, LEE W S, GAN H, et al. Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages[J]. Remote Sensing201911(13): 1584.
137 WITTSTRUCK L, KüHLING I, TRAUTZ D, et al. UAV-based RGB imagery for Hokkaido pumpkin (cucurbita max.) detection and yield estimation[J]. Sensors202021(1): 118.
138 PANG Y, SHI Y Y, GAO S C, et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery[J]. Computers and Electronics in Agriculture2020178: 105766.
139 OSCO L P, DOS SANTOS DE ARRUDA M, GON?ALVES D N, et al. A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing2021174: 1-17.
140 MARTIN C, ZHANG Q N, ZHAI D J, et al. Enabling a large-scale assessment of litter along Saudi Arabian red Sea Shores by combining drones and machine learning[J]. Environmental Pollution2021277: 116730.
141 XUE B, HUANG B X, WEI W B, et al. An efficient deep-sea debris detection method using deep neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 12348-12360.
142 JIA T L, KAPELAN Z, DE VRIES R, et al. Deep learning for detecting macroplastic litter in water bodies: A review[J]. Water Research2023231: 119632.
143 苏航, 徐从安, 姚力波, 等. 一种轻量化SAR图像舰船目标斜框检测方法[J]. 航空学报202243(S1): 726922.
  SU H, XU C A, YAO L B, et al. A lightweight oriented ship detection method in SAR images[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726922 (in Chinese).
144 肖欣林, 施伟超, 郑向涛, 等. 基于多模型协同的舰船目标检测[J]. 航空学报202445(14): 630241.
  XIAO X L, SHI W C, ZHENG X T, et al. Multiple models collaboration for ship detection[J]. Acta Aeronautica et Astronautica Sinica202445(14): 630241 (in Chinese).
145 ER M J, ZHANG Y N, CHEN J, et al. Ship detection with deep learning: A survey[J]. Artificial Intelligence Review202356(10): 11825-11865.
146 DELPLANQUE A, FOUCHER S, LEJEUNE P, et al. Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks[J]. Remote Sensing in Ecology and Conservation20228(2): 166-179.
147 KELLENBERGER B, MARCOS D, TUIA D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning[J]. Remote Sensing of Environment2018216: 139-153.
Outlines

/