ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Architecture and key technologies of intelligent cooperative IOODA technology system for swarm systems
Received date: 2024-07-05
Revised date: 2024-08-08
Accepted date: 2024-09-05
Online published: 2024-09-10
Supported by
National Natural Science Foundation of China(U2241217);Beijing Natural Science Foundation(JQ23019)
Cooperative technology is the effective guarantee and approach for swarm systems to execute tasks and generate intelligence. The core of intelligent cooperation of swarm systems lies in the information exchange between individuals to complete complex cooperative behaviors, thereby achieving a significant improvement in overall task efficiency. By sorting out the functions and supporting relationships required for cooperative task execution in swarm systems, five key technologies required for swarm systems to complete tasks cooperatively are summarized. They are self-organizing interaction technology, cooperative perception technology, cooperative cognitive technology, cooperative decision-making technology, and cooperative guidance and control technology. An Interaction-Observation-Orientation-Decision-Action (IOODA) technology architecture for intelligent cooperation in swarm systems is proposed. The concept and connotation of the intelligent cooperative IOODA technology architecture for swarm systems are presented. The key technologies involved in the IOODA technology architecture and the existing progress are reviewed. The challenges faced by the IOODA technology system are analyzed, and prospects for future development of various key technologies are also discussed.
Xiwang DONG , Jianglong YU , Yongzhao HUA , Jinhu Lü , Zhang REN . Architecture and key technologies of intelligent cooperative IOODA technology system for swarm systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(4) : 30911 -030911 . DOI: 10.7527/S1000-6893.2024.30911
1 | 殷子樵, 郭炳晖, 马双鸽, 等. 群智体系网络结构的自治调节: 从生物调控网络结构谈起[J]. 计算机科学, 2021, 48(5): 184-189. |
YIN Z Q, GUO B H, MA S G, et al. Autonomous structural adj ustment of crowd intelligence network: Begin from structure of biological regulatory network[J]. Computer Science, 2021, 48(5): 184-189 (in Chinese). | |
2 | 邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报, 2017, 39(3): 317-322. |
QIU H X, DUAN H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317-322 (in Chinese). | |
3 | 秦小林, 罗刚, 李文博, 等. 集群智能算法综述[J]. 无人系统技术, 2021, 4(3): 1-10. |
QIN X L, LUO G, LI W B, et al. A review of swarm intelligence algorithms[J]. Unmanned Systems Technology, 2021, 4(3): 1-10 (in Chinese). | |
4 | 于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817. |
YU J L, DONG X W, LI Q D, et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325817 (in Chinese). | |
5 | 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570. |
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527570 (in Chinese). | |
6 | 王新尧, 曹云峰, 孙厚俊, 等. 基于DoDAF的有人/无人机协同作战体系结构建模[J]. 系统工程与电子技术, 2020, 42(10): 2265-2274. |
WANG X Y, CAO Y F, SUN H J, et al. Modeling for cooperative combat system architecture of manned/unmanned aerial vehicle based on DoDAF[J]. Systems Engineering and Electronics, 2020, 42(10): 2265-2274 (in Chinese). | |
7 | 张堃, 华帅, 袁斌林, 等. 基于Multi-Agent的无人机集群体系自主作战系统设计[J]. 系统工程与电子技术, 2024, 46(4): 1273-1286. |
ZHANG K, HUA S, YUAN B L, et al. Design of autonomous combat system of unmanned cluster system based on Multi-Agent[J]. Systems Engineering and Electronics, 2024, 46(4): 1273-1286 (in Chinese). | |
8 | 王维平, 朱一凡, 王涛, 等. 体系视野下的MBSE[J]. 科技导报, 2019, 37(7): 12-21. |
WANG W P, ZHU Y F, WANG T, et al. MBSE from a system of systems point of view[J]. Science & Technology Review, 2019, 37(7): 12-21 (in Chinese). | |
9 | 祝学军, 赵长见, 梁卓 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(04): 524332. |
ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(04): 524332 (in Chinese). | |
10 | YUAN Z H, JIN J, SUN L L, et al. Ultra-reliable IoT communications with UAVs: A swarm use case[J]. IEEE Communications Magazine, 2018, 56(12): 90-96. |
11 | LEE H C, KE K H. Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2177-2187. |
12 | Lakhwani K, Singh T, Aruna O. Multi-layer UAV Ad Hoc network architecture, protocol and simulation[J]. Artificial Intelligent Techniques for Wireless Communication and Networking, 2022: 193-209. |
13 | HALIM A H, ISMAIL I. Combinatorial optimization: Comparison of heuristic algorithms in travelling salesman problem[J]. Archives of Computational Methods in Engineering, 2019, 26(2): 367-380. |
14 | QIU J, GURUSAMY M, CHUA K C, et al. Local restoration with multiple spanning trees in metro Ethernet networks[J]. ACM Transactions on Networking, 2011, 19(2): 602-614. |
15 | REZOUG A, BADER-EL-DEN M, BOUGHACI D. Guided genetic algorithm for the multidimensional knapsack problem[J]. Memetic Computing, 2018, 10(1): 29-42. |
16 | LI Z R, WANG X, PAN L, et al. Network topology optimization via deep reinforcement learning[J]. IEEE Transactions on Communications, 2023, 71(5): 2847-2859. |
17 | 冯志尚, 袁霖, 刘军. 拒止环境下无人机集群安全通信问题分析[J]. 信息安全与通信保密, 2023, 21(4): 66-72. |
FENG Z S, YUAN L, LIU J. Analysis of secure communication problems of UAV cluster in denial environment[J]. Information Security and Communications Privacy, 2023, 21(4): 66-72 (in Chinese). | |
18 | 马承彦. 面向无人机协同环境的安全组网技术研究[D]. 西安: 西安电子科技大学, 2019. |
MA C Y. Research on security networking technology for UAV cooperative environment[D]. Xi’an: Xidian University, 2019 (in Chinese). | |
19 | 黄治华, 袁林锋, 蔡全旺. 海上无人系统集群通信网络关键技术研究[J]. 舰船科学技术, 2022, 44(14): 127-132. |
HUANG Z H, YUAN L F, CAI Q W. Research of key technology in marine unmanned swarm commnunication network[J]. Ship Science and Technology, 2022,44(14): 127-132 (in Chinese). | |
20 | DENG C, GAO W N, WEN C Y, et al. Data-driven practical cooperative output regulation under actuator faults and DoS attacks[J]. IEEE Transactions on Cybernetics, 2023, 53(11): 7417-7428. |
21 | 刘军, 袁霖, 冯志尚. 集群网络密钥管理方案研究综述[J]. 网络与信息安全学报, 2022, 8(6): 52-69. |
LIU J, YUAN L, FENG Z S. Survey of key management schemes for cluster networks[J]. Chinese Journal of Network and Information Security, 2022, 8(6): 52-69 (in Chinese). | |
22 | KIM T, KIM D M, PRATAS N, et al. An enhanced access reservation protocol with a partial preamble transmission mechanism in NB-IoT systems[J]. IEEE Communications Letters, 2017, 21(10): 2270-2273. |
23 | DE CASTRO TOMé M, NARDELLI P H J, ALVES H. Long-range low-power wireless networks and sampling strategies in electricity metering[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1629-1637. |
24 | 李振汉, 唐余亮, 雷鹰. 基于ZigBee的无线传感器网络的自愈功能[J]. 厦门大学学报(自然科学版), 2012, 51(5): 834-838. |
LI Z H, TANG Y L, LEI Y. Self-healing function based on wireless sensor networks of ZigBee[J]. Journal of Xiamen University (Natural Science), 2012, 51(5): 834-838 (in Chinese). | |
25 | 王敏敏, 杨燈, 王坚. BLE测距精度影响因素评估分析[J]. 导航定位学报, 2024, 12(1): 70-78. |
WANG M M, YANG D, WANG J. Evaluation and analysis on influencing factors of BLE ranging accuracy[J]. Journal of Navigation and Positioning, 2024, 12(1): 70-78 (in Chinese). | |
26 | 丁健楠. 跨介质异构无人集群系统协同组网技术研究[D]. 成都: 电子科技大学, 2021. |
DING J N. Research on cooperative networking technology of heterogeneous unmanned cluster system across media[D].Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese). | |
27 | 顾凌枫, 何明, 陈国友,等. 无人机集群系统弹性研究[J]. 系统工程与电子技术, 2020, 43(1): 156-162. |
GU L F, HE M, CHEN G Y, et al. Research on unmanned aerial vehicle swarm system resilience[J]. Systems Engineering and Electronics, 2021, 43(1): 156-162 (in Chinese). | |
28 | 韦宸越, 何明, 韩伟, 等. 无人机集群弹性评估及重构技术研究[J]. 计算机工程与应用, 2024, 60(15): 1-10. |
WEI C Y, HE M, HAN Wei, et al. Research on unmanned aerial vehicle swarm resilience assessment and reconfiguration technology[J]. Computer Engineering and Applications, 2024, 60(15): 1-10 (in Chinese). | |
29 | 周国强, 穆琳, 吴家仁, 等. 基于智能体的无人机集群弹性均衡度量与仿真评估方法[J]. 航空兵器, 2022, 29(3): 54-60. |
ZHOU G Q, MU L, WU J R, et al. Resilience equilibrium measurement and simulation evaluation method of UAV swarm based on agent[J]. Aero Weaponry, 2022, 29(3): 54-60 (in Chinese). | |
30 | RAFIEE S, SALAVATI C, ABDOLLAHPOURI A. CNDP: Link prediction based on common neighbors degree penalization[J]. Physica A Statistical Mechanics and Its Applications, 2020, 539: 122950. |
31 | KANG Z P, ZENG H, HU H B, et al. Multi-objective optimized connectivity restoring of disjoint segments using mobile data collectors in wireless sensor network[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1): 65. |
32 | CHOUIKHI S, KORBI I EL, GHAMRI-DOUDANE Y, et al. Distributed connectivity restoration in multichannel wireless sensor networks[J]. Computer Networks, 2017, 127: 282-295. |
33 | 段云飞, 赵峰, 左延群, 等. 基于双线性调频的光载太赫兹通感信号产生与传输分析[J]. 光学学报, 2024, 44(13): 3788/AOS240497. |
DUAN Y F, ZHAO F, ZUO Y Q, et al. Generation and transmission analysis of optical terahertz communication sensing signals based on dual linear frequency modulation[J]. Acta Optica Sinica, 2024, 44(13): 3788/AOS240497 (in Chinese). | |
34 | 朱凯凯. 水下无线通信技术的研究与展望[J]. 现代传输, 2022(6): 51-53. |
ZHU K K. Research and prospect of underwater wireless communication technology[J]. Modern Transmission, 2022(6): 51-53 (in Chinese). | |
35 | 丁举鹏, 易芝玲, 王劲涛, 等. 无人机机载光无线通信研究进展[J]. 激光与光电子学进展, 2020, 57(23): 230003. |
DING J P, YI Z L, WANG J T, et al. Recent advances of UAV airborne optical wireless communications[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230003 (in Chinese). | |
36 | 陈以鹏, 刘靖阳, 朱佳莉, 等. 机器学习在量子通信资源优化配置中的应用[J]. 物理学报, 2022, 71(22): 16-21. |
CHEN Y P, LIU J Y, ZHU J L, et al. Application of machine learning in optimal allocation of quantum communication resources[J]. Acta Physica Sinica, 2022, 71(22): 16-21 (in Chinese). | |
37 | 王钟鸣, 姚文臣, 马兆伟, 等. 面向侦察任务的无人机机载感知传感器配置与融合综述[J]. 无人系统技术, 2022, 5(02): 1-8. |
WANG Z M, YAO W C, MA Z W, et al. Overview of UAV airborne sensing sensor configuration and fusion for reconnaissance mission[J]. Unmanned Systems Technology, 2022, 5(02): 1-8 (in Chinese). | |
38 | 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(06): 15-29. |
CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020,42(06):15-29 (in Chinese). | |
39 | 张宏钢, 杨海涛, 郑逢杰, 等. 特征级红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2024, 60(18): 17-31. |
ZHANG H G, YANG H T, ZHENG F J. Review of feature-level infrared and visible image fusion[J]. Computer Engineering and Applications, 2024, 60(18): 17-31 (in Chinese). | |
40 | 曹诗嘉, 谭覃燕, 王粉娟, 等. 基于非下采样轮廓波变换的红外和SAR图像融合算法[J]. 飞控与探测, 2023, 6(02): 37-51. |
CAO S J, TAN Q Y, WANG F J, et al.A lgorithm of infrared and SAR image fusion based on non-subsampled contourlet transform[J]. Flight Control and Detection,2023, 6(02): 37-51 (in Chinese). | |
41 | 要小涛, 王正勇, 石伟, 等. 基于感知哈希与尺度不变特征变换的快速拼接算法[J]. 四川大学学报(自然科学版), 2021, 58(03): 89-96. |
YAO X T, WANG Z Y, SHI W, et al. Fast stitching algorithm based on perceptual HASH and scale invariant feature transformation[J]. Journal of Sichuan University(Natural Science Edition),2021, 58(03): 89-96 (in Chinese). | |
42 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
43 | Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]∥ Proceedings of the 25th International Conference on Neural Information Processing Systems.New York:ACM, 2012: 1097-1105. |
44 | 杨利春, 田彬, 党建武. 基于深度学习的图像拼接算法研究综述[J]. 计算机应用研究, 2024, 41(7): 1930-1939. |
YANG L C, TIAN B, DANG J W. Survey on image stitching algorithm based on deep learning[J]. Application Research of Computers, 2024, 41(7): 1930-1939 (in Chinese). | |
45 | SNAVELY N, SEITZ S M, SZELISKI R. Modeling the world from Internet photo collections[J]. International Journal of Computer Vision, 2008, 80(2): 189-210. |
46 | 许向阳, 袁杉杉, 王军, 等. 基于全局和局部特征的图像拼接方法[J]. 北京理工大学学报, 2022, 42(5): 502-510. |
XU X Y, YUAN S S, WANG J, et al. Image stitching method based on global and local features[J]. Transactions of Beijing Institute of Technology, 2022, 42(5): 502-510 (in Chinese). | |
47 | BROWN M, LOWE D G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73. |
48 | 宋晓茹, 刘康, 高嵩, 等. 基于深度学习的军事目标识别算法综述[J]. 科学技术与工程, 2022, 22(22): 9466-9475. |
SONG X R, LIU K, GAO S, et al. Overview of military target recognition algorithms based on deep learning[J]. Science Technology and Engineering, 2022, 22(22): 9466-9475 (in Chinese). | |
49 | WILLES J, HARRISON J, HARAKEH A, et al. Bayesian embeddings for few-shot open world recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(3): 1513-1529. |
50 | GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819. |
51 | YANG X, YAN J, WANG W, et al. Brain-inspired models for visual object recognition: An overview[J]. Artificial Intelligence Review, 2022, 55(7): 5263-5311. |
52 | LIU Z J, TANG H T, AMINI A, et al. BEVFusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation[C]∥2023 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2023: 2774-2781. |
53 | WENG J K, DING Y J, HU C B, et al. Meta-neural-network for real-time and passive deep-learning-based object recognition[J]. Nature Communications, 2020, 11: 6309. |
54 | Wu X, Sahoo D, Hoi S C H. Recent advances in deep learning forobject detection[J]. Neurocomputing, 2020, 396:39-64. |
55 | BATTISTELLI G, CHISCI L, MUGNAI G, et al. Consensus-based linear and nonlinear filtering[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1410-1415. |
56 | JENABZADEH A, SAFARINEJADIAN B. Distributed estimation and control for nonlinear multi-agent systems in the presence of input delay or external disturbances[J]. ISA Transactions, 2020, 98: 198-206. |
57 | HUANG J H, TANG Y, YANG W, et al. Resilient consensus-based distributed filtering: convergence analysis under stealthy attacks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4878-4888. |
58 | 陈林秀, 杨翔宇, 张航, 等. 基于主动雷达/红外信息融合的复合制导方法[J]. 航空学报, 2022, 43(S1): 727058. |
CHEN L X, YANG X Y, ZHANG H, et al. Composite guidance technology based on active radar/infrared information fusion[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 727058 (in Chinese). | |
59 | LI W L, JIA Y M, DU J P. State estimation for stochastic complex networks with switching topology[J]. IEEE Transactions on Automatic Control, 2017, 62(12): 6377-6384. |
60 | LI W L, JIA Y M, DU J P. Distributed Kalman consensus filter with intermittent observations[J]. Journal of the Franklin Institute, 2015, 352(9): 3764-3781. |
61 | ROHR E R, MARELLI D, FU M Y. Kalman filtering with intermittent observations: On the boundedness of the expected error covariance[J]. IEEE Transactions on Automatic Control, 2014, 59(10): 2724-2738. |
62 | SHEN B, WANG Z D, QIAO H. Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1152-1163. |
63 | LIU Q Y, WANG Z D, HE X, et al. Event-based distributed filtering with stochastic measurement fading[J]. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1643-1652. |
64 | BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(5): 451-460. |
65 | RAKAI L, SONG H S, SUN S J, et al. Data association in multiple object tracking: A survey of recent techniques[J]. Expert Systems with Applications, 2022, 192: 116300. |
66 | 许飞, 漆斌, 程海涛, 等. 基于MHT-IMM的航迹生成算法建模与仿真[J]. 空天防御, 2021, 4(1): 97-102. |
XU F, QI B, CHENG H T, et al. Modeling and simulation of track generation algorithm based on MHT-IMM[J]. Air & Space Defense, 2021, 4(1): 97-102 (in Chinese). | |
67 | 朱云峰. 基于多源信息融合的无人机相对导航技术研究[D]. 南京: 南京航空航天大学, 2019. |
ZHU Y F. Research on UAV relative navigation technology based on multi-source information fusion[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
68 | 潘泉, 王增福, 梁彦, 等. 信息融合理论的基本方法与进展(Ⅱ)[J]. 控制理论与应用, 2012, 29(10): 1233-1244. |
PAN Q, WANG Z F, LIANG Y, et al. Basic methods and progress of information fusion (Ⅱ)[J]. Control Theory and Technology, 2012, 29(10): 1233-1244 (in Chinese). | |
69 | 武成锋, 程进, 郭晓云, 等. 飞行器集群协同定位与导航对抗技术发展与展望[J]. 宇航学报, 2022, 43(2): 131-142. |
WU C F, CHENG J, GUO X Y, et al. Development and prospect of aircraft clusters cooperative positioning and navigation countermeasures technology[J]. Journal of Astronautics, 2022, 43(2): 131-142 (in Chinese). | |
70 | 魏帅迎, 杜雨桐, 胡博, 等. GNSS拒止环境下UAV集群协同导航技术发展现状及分析[J]. 导航与控制, 2023, 22(4): 5-16. |
WEI S Y, DU Y T, HU B, et al. Development status and analysis of UAV swarm cooperative navigation technology in GNSS-denied environment[J]. Navigation and Control, 2023, 22(4): 5-16 (in Chinese). | |
71 | LIU T X, LI B F, CHEN G E, et al. Tightly coupled integration of GNSS/UWB/VIO for reliable and seamless positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 2116-2128. |
72 | 仲维彬, 张扬, 韩春雷. 基于深度学习的空海防御智能态势认知技术研究[J]. 现代导航, 2022, 13(4): 268-272. |
ZHONG W B, ZHANG Y, HAN C L. Intelligent threat assessment algorithm based on deep learning[J]. Modern Navigation, 2022, 13(4): 268-272 (in Chinese). | |
73 | 朱丰, 胡晓峰, 吴琳, 等. 从态势认知走向态势智能认知[J]. 系统仿真学报, 2018, 30(3): 761-771. |
ZHU F, HU X F, WU L, et al. From situation cognition stepped into situation intelligent cognition[J]. Journal of System Simulation, 2018, 30(3): 761-771 (in Chinese). | |
74 | D’ANIELLO G. Fuzzy logic for situation awareness: A systematic review[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(4): 4419-4438. |
75 | 陈致远, 沈堤, 余付平, 等. 基于空域协同的空中目标综合识别方法[J]. 现代防御技术, 2022, 50(03): 61-77. |
CHEN Z Y, SHEN T, YU F P, et al. Air target comprehensive identification method based on airspace coordinating measures?[J]. Modern Defense Technology, 2022, 50(03): 61-77 (in Chinese). | |
76 | 李玉庆, 江飞龙, 陈卓, 等. 一种利用Transformer的无人集群对抗态势要素识别方法[J]. 哈尔滨工业大学学报, 2022, 54(12): 1-9. |
LI Y Q, JIANG F L, CHEN Z, et al. Recognition method for unmanned swarm adversarial situation elements using transformer[J]. Journal of Harbin Institute of Technology, 2022, 54(12): 1-9 (in Chinese). | |
77 | LEE C E, BAEK J, SON J, et al. Deep AI military staff: cooperative battlefield situation awareness for commander’s decision making[J]. The Journal of Supercomputing, 2023, 79(6): 6040-6069. |
78 | 孙怡峰, 廖树范, 吴疆, 等. 基于大模型的态势认知智能体[J]. 指挥控制与仿真, 2024, 46(2): 1-7. |
SUN Y F, LIAO S F, WU J, et al. Research on situation awareness agent based on large models[J]. Command Control & Simulation, 2024, 46(2): 1-7 (in Chinese). | |
79 | CAO X, SUN C Y, WANG X R. Threat assessment strategy of human-in-the-loop unmanned underwater vehicle under uncertain events[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(1): 520-532. |
80 | 孙海文, 于邵祯, 江源, 等. 海上无人机蜂群目标威胁评估方法[J]. 兵工学报, 2022, 43(S2): 32-39. |
SUN H W, YU S Z, JIANG Y, et al. Target threat assessment method for UAV swarm at sea[J]. Acta Armamentarii, 2022, 43(S2): 32-39 (in Chinese). | |
81 | 华家辉, 孙鑫, 陈晓东, 等. 基于集群分析的空中作战目标威胁评估技术研究[J]. 战术导弹技术, 2023(2): 96-104, 121. |
HUA J H, SUN X, CHEN X D, et al. Research on air objective threat assessment technology based on cluster analysis[J]. Tactical Missile Technology, 2023(2): 96-104, 121 (in Chinese). | |
82 | ZHANG Z, WANG H F, GENG J, et al. An information fusion method based on deep learning and fuzzy discount-weighting for target intention recognition[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104610. |
83 | 张晨浩, 周焰, 蔡益朝, 等. 空中目标作战意图识别研究综述[J].现代防御技术,2024, 52(4):1-15. |
ZHANG C H, ZHOU Y, CAI Y C, et al. A review of air target operational intention recognition research[J]. Modern Defense Technology, 2024, 52(4):1-15 (in Chinese). | |
84 | 吴南方. 基于循环神经网络的集群意图识别方法研究[D]. 成都: 西南交通大学, 2019. |
WU N F. Research on cluster intention recognition method based on cyclic neural network[D]. Chengdu: Southwest Jiaotong University, 2019 (in Chinese). | |
85 | 杨锐, 杨继龙, 刘晓凡, 等. 基于动态序列贝叶斯网络的空地协同作战意图识别[J]. 指挥控制与仿真, 2024, 46(3): 75-85. |
YANG R, YANG J L, LIU X F, et al. Air-ground cooperative operations intention recognition based on dynamic series Bayesian network[J]. Command Control & Simulation, 2024, 46(3): 75-85 (in Chinese). | |
86 | 张祥银, 张曦梁, 张天. 网络攻击下基于分布式意图识别的集群逃逸与汇聚控制[J]. 控制与决策,2024,39(12):4171-4180. |
ZHANG X Y, ZHANG X L, ZHANG T. Swarm escape and convergence control based on distributed intent reconition under network attack[J]. Control and Decision, 2024,39(12):4171-4180 (in Chinese). | |
87 | 张根源, 林智伟, 唐旭, 等. 无人机蜂群轨迹预测研究[J]. 航空工程进展, 2023, 14(3): 69-76. |
ZHANG G Y, LIN Z W, TANG X, et al. Research on trajectory prediction of UAV drone swarm[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 69-76 (in Chinese). | |
88 | 王昱, 关智慧, 李远鹏. 基于轨迹预测和分布式MADDPG的无人机集群追击决策[J]. 计算机应用 2024, 44(11), 3623-3628. |
WANG Y, GUAN Z H, YI Y P. Distributed UAV cluster pursuit decision-making based on trajectory prediction and MADDPG[J]. Journal of Computer Applications, 2024, 44(11), 3623-3628 (in Chinese). | |
89 | 薛健, 赵琳, 向贤财, 等. 非完全信息下无人机集群对抗研究综述[J]. 电子与信息学报, 2024, 46(4): 1157-1172. |
XUE J, ZHAO L, XIANG X C, et al. A review of the research on UAV swarm confrontation under incomplete information[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1157-1172 (in Chinese). | |
90 | 楚威, 周芳, 丁冉, 等. 面向战场行为预测的平行仿真系统构建方法[J]. 指挥信息系统与技术, 2019, 10(3): 25-31. |
CHU W, ZHOU F, DING R, et al. Parallel simulation system construction method for battlefield behavior prediction[J]. Command Information System and Technology, 2019, 10(3): 25-31 (in Chinese). | |
91 | 韩戈白, 张海越, 柳永齐, 等. 美军作战综合保障态势一张图研究综述[J]. 信息化研究, 2021, 47(6): 1-5. |
HAN G B, ZHANG H Y, LIU Y Q, et al. Overview of the situation map of American logistic guarantee[J]. Informatization Research, 2021, 47(6): 1-5 (in Chinese). | |
92 | 李归, 伍光新, 薛慧, 等. 海战场态势生成技术发展综述[J]. 电讯技术, 2022, 62(5): 678-685. |
LI G, WU G X, XUE H, et al. An overview of situation generation technology for sea battlefield[J]. Telecommunication Engineering, 2022, 62(5): 678-685 (in Chinese). | |
93 | 周洁静, 蒋婷婷. 通用空战场综合态势图的研究[J]. 信息化研究, 2020, 46(4): 1-6, 11. |
ZHOU J J, JIANG T T. Research on common air battlefield comprehensive situation picture[J]. Informatization Research, 2020, 46(4): 1-6, 11 (in Chinese). | |
94 | 肖东. 异构多无人机自主任务规划方法研究[D]. 南京: 南京航空航天大学, 2018. |
XIAO D. Research on autonomous mission planning method of heterogeneous multi-UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
95 | 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. |
JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111 (in Chinese). | |
96 | 毕文豪, 张梦琦, 高飞, 等. 无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46(3): 922-934. |
BI W H, ZHANG M Q, GAO F, et al. Review on UAV swarm task allocation technology[J]. Systems Engineering and Electronics, 2024, 46(3): 922-934 (in Chinese). | |
97 | 张瑞鹏, 冯彦翔, 杨宜康. 多无人机协同任务分配混合粒子群算法[J]. 航空学报, 2022, 43(12): 326011. |
ZHANG R P, FENG Y X, YANG Y K. Hybrid particle swarm algorithm for multi-UAV cooperative task allocation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 326011 (in Chinese). | |
98 | 李明哲, 马琼敏, 伍国华. 基于强化学习的无人机集群动态任务规划算法[J]. 系统仿真技术, 2023, 19(3): 193-204. |
LI M Z, MA Q M, WU G H. Dynamic task planning algorithm for UAV swarm based on reinforcement learning[J]. System Simulation Technology, 2023, 19(3): 193-204 (in Chinese). | |
99 | 翟政, 何明, 徐鹏, 等. 基于市场机制的无人集群任务分配研究综述[J]. 计算机应用研究, 2023, 40(7): 1921-1928. |
ZHAI Z, HE M, XU P, et al. Research review of task allocation for unmanned swarm based on market mechanism[J]. Application Research of Computers, 2023, 40(7): 1921-1928 (in Chinese). | |
100 | 鞠锴, 冒泽慧, 姜斌, 等. 基于势博弈的异构多智能体系统任务分配和重分配[J]. 自动化学报, 2022, 48(10): 2416-2428. |
JU K, MAO Z H, JIANG B, et al. Task allocation and reallocation for heterogeneous multiagent systems based on potential game[J]. Acta Automatica Sinica, 2022, 48(10): 2416-2428 (in Chinese). | |
101 | 郝冠捷, 姚尧, 常鹏, 等. 基于深度强化学习的分布式UUV集群任务分配算法[J]. 指挥控制与仿真, 2023, 45(3): 25-33. |
HAO G J, YAO Y, CHANG P, et al. Distributed UUV cluster task allocation algorithm based on deep reinforcement learning[J]. Command Control & Simulation, 2023, 45(3): 25-33 (in Chinese). | |
102 | LI L, CHEN Z Y, WANG H, et al. Fast task allocation of heterogeneous robots with temporal logic and inter-task constraints[J]. IEEE Robotics and Automation Letters, 2023, 8(8): 4991-4998. |
103 | LIU Z S, GUO M, BAO W M, et al. Fast and adaptive multi-agent planning under collaborative temporal logic tasks via poset products[J]. Research, 2024, 7: 0337. |
104 | 李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展: 模型、 算法与应用[J]. 系统工程与电子技术, 2023, 45(04): 1049-1071. |
LI M J, CHANG X N, SHI J M, et al. Developments of weapon target assignment: Models, algorithms, and applications[J]. Systems Engineering and Electronics, 2023, 45(04): 1049-1071 (in Chinese). | |
105 | 刘攀, 徐胜利, 张迪, 等. 基于粒子群优化的多导弹动态武器目标分配算法[J]. 南京航空航天大学学报, 2023, 55(1): 108-115. |
LIU P, XU S L, ZHANG D, et al. Multi-missile dynamic weapon target assignment algorithm based on particle swarm optimization[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(1): 108-115 (in Chinese). | |
106 | 强裕功, 宋贵宝, 刘铁, 等. 基于拍卖算法的动态防空武器目标分配[J]. 兵工自动化, 2023, 42(7): 50-54. |
QIANG Y G, SONG G B, LIU T, et al. Dynamic air defense weapon target assignment based on auction algorithm[J]. Ordnance Industry Automation, 2023, 42(7): 50-54 (in Chinese). | |
107 | 郭建国, 胡冠杰, 许新鹏, 等. 基于强化学习的多对多拦截目标分配方法[J]. 空天防御, 2024, 7(1): 24-31. |
GUO J G, HU G J, XU X P, et al. Reinforcement learning-based target assignment method for many-to-many interceptions[J]. Air & Space Defense, 2024, 7(1): 24-31 (in Chinese). | |
108 | 易凯, 张修社, 胡小全, 等. 多特征融合与深度学习的防空目标分配方法[J]. 战术导弹技术, 2023, (04): 165-172. |
YI K, ZHANG X S, HU X Q, et al. Air defense target assignment method based on multi-feature fusion anddeep learning[J]. Tactical Missile Technology, 2023, (04): 165-172 (in Chinese). | |
109 | 卢锐, 彭鹏菲. 基于深度强化学习的海上编队防空任务分配[J]. 火力与指挥控制, 2023, 48(6): 35-41. |
LU R, PENG P F. Maritime formation air defense task assignment based on deep reinforcement learning[J]. Fire Control & Command Control, 2023, 48(6): 35-41 (in Chinese). | |
110 | 于汶江, 谢旭东, 王子凡, 等. 基于势场导引的空地跨域协同探测方法[J]. 无人系统技术, 2023, 6(06): 12-20. |
YU W J, XIE X D, WANG Z F, et al. Air-ground cross-domain cooperative detection method based on potential field guidance[J], Unmanned Systems Technology, 2023, 6(06): 12-20 (in Chinese). | |
111 | 范铮铮, 王正平, 葛佳昊. 基于A*算法的多无人机实时打击航迹规划[J]. 战术导弹技术, 2021(5): 94-101, 112. |
FAN Z Z, WANG Z P, GE J H. Real-time strike path planning of multiple UAVs based on A* algorithm[J]. Tactical Missile Technology, 2021(5): 94-101, 112 (in Chinese). | |
112 | 杨小草, 都延丽, 步雨浓, 等. 基于层次分解的在线三维RRT*协同航路规划[J]. 系统工程与电子技术, 2023, 45(5): 1409-1419. |
YANG X C, DU Y L, BU Y N, et al. Online three-dimensional RRT*cooperative route planning based on hierarchical decomposition[J]. Systems Engineering and Electronics, 2023, 45(5): 1409-1419 (in Chinese). | |
113 | 王孟阳, 张栋, 唐硕, 等. 复杂动态环境下多无人机目标跟踪的分布式协同轨迹规划方法[J]. 指挥与控制学报, 2024, 10(02): 197-212. |
WANG M Y, ZHANG D, TANG S, et al. A distributed collaborative trajectory planning method for multi-UAV targets tracking in complex dynamic environment[J]. Journal of Command and Control, 2024, 10(02):197-212 (in Chinese). | |
114 | 温岳, 冯肖雪, 谢天, 等. 引入控制量变化率约束的双层协同轨迹规划器[J]. 宇航学报, 2024, 45(01): 101-109. |
WEN Y, FENG X X, XIE T, et al. Two-layer cooperative trajectory planner with constraint on the change rate of control variable[J]. Journal of Astronautics, 2024, 45(01): 101-109 (in Chinese). | |
115 | 周宏宇, 王小刚, 单永志, 等. 基于改进粒子群算法的飞行器协同轨迹规划[J]. 自动化学报, 2022, 48(11): 2670-2676. |
ZHOU H Y, WANG X G, SHAN Y Z, et al. Synergistic path planning for multiple vehicles based on an improved particle swarm optimization method[J]. Acta Automatica Sinica, 2022, 48(11): 2670-2676 (in Chinese). | |
116 | 宋逸哲, 刘妹琴, 董山玲, 等. 弱通信条件下多水下自主航行器分布式编队轨迹规划方法[J]. 控制与决策, 2025, 40(1): 72-79. |
SONG Y Z, LIU M Q, DONG S L, et al. Distributed formation trajectory planning method for multiple autonomous underwater vehicles with limited communication[J]. Control and Decision 2025, 40(1): 72-79 (in Chinese). | |
117 | CHEN Y D, GUO M, LI Z K. Deadlock resolution and recursive feasibility in MPC-based multirobot trajectory generation[J]. IEEE Transactions on Automatic Control, 2024, 69(9): 6058-6073. |
118 | 邓云山, 夏元清, 孙中奇. 基于松弛序列凸优化的轮式机器人协同轨迹规划[J]. 无人系统技术, 2021, 4(01): 24-32. |
DENG S Y, XIA Y Q, SUN Z Q. Coordination trajectory planning of wheeled robot using relaxation sequential convex programming[J]. Unmanned Systems Technology, 2021, 4(1): 24-32 (in Chinese). | |
119 | 宋瑞, 朱勇, 徐广通, 等. 基于序列凸优化的高超声速飞行器协同再入轨迹规划[J]. 战术导弹技术, 2020(6): 7-16. |
SONG R, ZHU Y, XU G T, et al. Cooperative reentry trajectory planning of hypersonic vehicle based on sequential convex programming[J]. Tactical Missile Technology, 2020(6): 7-16 (in Chinese). | |
120 | 尹依伊, 王晓芳, 周健. 基于Q学习的多无人机协同航迹规划方法[J]. 兵工学报, 2023, 44(2): 484-495. |
YIN Y Y, WANG X F, ZHOU J. Q-learning-based multi-UAV cooperative path planning method[J]. Acta Armamentarii, 2023, 44(2): 484-495 (in Chinese). | |
121 | 张耐民, 蔡秉辰, 于浛, 等. 基于多智能体强化学习的对抗博弈技术综述[J]. 海军航空大学学报, 2024, 39(04): 395-410. |
ZHANG N M, CAI B C, YU H, et al. A review of adversarial game techniques based on multi-agent reinforcement learning[J]. Journal of Naval Aviation University, 2024, 39(04): 395-410 (in Chinese). | |
122 | 朱建文, 赵长见, 李小平, 等. 基于强化学习的集群多目标分配与智能决策方法[J]. 兵工学报, 2021, 42(9): 2040-2048. |
ZHU J W, ZHAO C J, LI X P, et al. Multi-target assignment and intelligent decision based on reinforcement learning[J]. Acta Armamentarii, 2021, 42(9): 2040-2048 (in Chinese). | |
123 | 符小卫, 王辉, 徐哲. 基于DE-MADDPG的多无人机协同追捕策略[J]. 航空学报, 2022, 43(5): 325311. |
FU X W, WANG H, XU Z. Cooperative pursuit strategy for multi-UAVs based on DE-MADDPG algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 325311 (in Chinese). | |
124 | 严锐驰, 李帅, 王晨, 等. 基于自博弈强化学习的异构无人机集群协同对抗决策方法[J]. 中国科学: 信息科学, 2024, 54(07): 1709-1729. |
YAN R C, LI S, WANG C, et al. Cooperative decision-making for heterogeneous UAV swarm confrontation based on self-play reinforcement learnin[J]. SCIENTIA SINICA Informationis, 2024,54(07):1709-1729 (in Chinese). | |
125 | YE M J, HU G Q. Distributed Nash equilibrium seeking by a consensus based approach[J]. IEEE Transactions on Automatic Control, 2017, 62(9): 4811-4818. |
126 | GADJOV D, PAVEL L. A passivity-based approach to Nash equilibrium seeking over networks[J]. IEEE Transactions on Automatic Control, 2019, 64(3): 1077-1092. |
127 | LIU F, DONG X W, YU J L, et al. Distributed Nash equilibrium seeking of N-coalition noncooperative games with application to UAV swarms[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2392-2405. |
128 | ISSACS R. Differential gamesⅠ? ,Ⅱ ,Ⅲ? ,Ⅳ:RM-1391, 1399, 1411, 1486[R]. Soonta Monica: The RAND Corporation. |
129 | SHIMA T, GOLAN O M, Bounded differential games guidance law for dual-controlled missiles, IEEE Transactions on Control Systems Technology, 2006, 14(4): 719-724. |
130 | Tan M, Shen H, Three-dimensional cooperative game guidance law for a leader-follower system with impact angles constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 405-420. |
131 | YAN R, SHI Z Y, ZHONG Y S. Reach-avoid games with two defenders and one attacker: An analytical approach[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1035-1046. |
132 | VAMVOUDAKIS K G, LEWIS F L. Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton-Jacobi equations[J]. Automatica, 2011, 47(8): 1556-1569. |
133 | VAMVOUDAKIS K G, LEWIS F L, HUDAS G R. Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality[J]. Automatica, 2012, 48(8): 1598-1611. |
134 | JIANG H, ZHANG H G, XIAO G Y, et al. Data-based approximate optimal control for nonzero-sum games of multi-player systems using adaptive dynamic programming[J]. Neurocomputing, 2018, 275: 192-199. |
135 | MARDEN J R, ARSLAN G, SHAMMA J S. Cooperative control and potential games[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 2009, 39(6): 1393-1407. |
136 | 罗亚中, 李振瑜, 祝海. 航天器轨道追逃微分对策研究综述[J]. 中国科学(技术科学), 2020, 50(12): 1533-1545. |
LUO Y Z, LI Z Y, ZHU H. Survey on spacecraft orbital pursuit-evasion differential games[J]. Scientia Sinica (Technologica), 2020, 50(12): 1533-1545 (in Chinese). | |
137 | 魏娜, 刘明雍, 张帅, 等. 基于协同对抗的水下博弈策略优化[J]. 西北工业大学学报, 2019, 37(1): 63-69. |
WEI N, LIU M Y, ZHANG S, et al. Optimizing underwater game strategy based on cooperative confrontation[J]. Journal of Northwestern Polytechnical University, 2019, 37(1): 63-69 (in Chinese). | |
138 | OLFATIS, MURRAYR M. Consensus problems in networks of agents with switching topology and time delay[J]. IEEE Transactions on Automatic Control, 2004, 49, 1520-1533. |
139 | REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661. |
140 | LIN P, JIA Y M, LI L. Distributed robust consensus control in directed networks of agents with time-delay[J]. Systems & Control Letters, 2008, 57(8): 643-653. |
141 | TIAN Y P, LIU C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128. |
142 | SUN Y G, WANG L, XIE G M. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays[J]. Systems & Control Letters, 2008, 57(2): 175-183. |
143 | SUN Y G, WANG L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays[J]. IEEE Transactions on Automatic Control, 2009, 54(7): 1607-1613. |
144 | XIAO F, WANG L, CHEN J, et al. Finite-time formation control for multi-agent systems[J]. Automatica, 2009, 45(11): 2605-2611. |
145 | XIE G M, WANG L. Moving formation convergence of a group of mobile robots via decentralised information feedback[J]. International Journal of Systems Science, 2009, 40(10): 1019-1027. |
146 | PORFIRI M, ROBERSON D G, STILWELL D J. Tracking and formation control of multiple autonomous agents: A two-level consensus approach[J]. Automatica, 2007, 43(8): 1318-1328. |
147 | MA C Q, ZHANG J F. On formability of linear continuous-time multi-agent systems[J]. Journal of Systems Science and Complexity, 2012, 25(1): 13-29. |
148 | DONG X W, HU G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies[J]. Automatica, 2016, 73: 47-55. |
149 | LIPPAY Z S, HOAGG J B. Formation control with time-varying formations, bounded controls, and local collision avoidance[J]. IEEE Transactions on Control Systems Technology, 2022, 30(1): 261-276. |
150 | LIU H, TIAN Y, LEWIS F L, et al. Robust formation flying control for a team of satellites subject to nonlinearities and uncertainties[J]. Aerospace Science and Technology, 2019, 95: 105455. |
151 | ZHUANG M L, TAN L G, LI K H, et al. Fixed-time formation control for spacecraft with prescribed performance guarantee under input saturation[J]. Aerospace Science and Technology, 2021, 119: 107176. |
152 | REN W, BEARD R. Virtual structure based spacecraft formation control with formation feedback:AIAA-2002-4963[R]. Reston: AIAA, 2002. |
153 | ASKARI A, MORTAZAVI M, TALEBI H A. UAV formation control via the virtual structure approach[J]. Journal of Aerospace Engineering, 2015, 28(1): 04014047. |
154 | KOWNACKI C. Multi-UAV flight using virtual structure combined with behavioral approach[J]. Acta Mechanica et Automatica, 2016, 10(2): 92-99. |
155 | SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382-18390. |
156 | WU T, WANG J, TIAN B L. Periodic event-triggered formation control for multi-UAV systems with collision avoidance[J]. Chinese Journal of Aeronautics, 2022, 35(8): 193-203. |
157 | 夏庆军, 张安, 张耀中. 大规模编队空战队形优化算法[J]. 控制理论与应用, 2010, 27(10): 1418-1422. |
XIA Q J, ZHANG A, ZHANG Y Z. Formation-optimizing algorithm for large-scale air combat[J]. Control Theory & Applications, 2010, 27(10): 1418-1422 (in Chinese). | |
158 | 徐星光, 王晓峰, 姚璐, 等. 固定翼无人机编队构型与通信拓扑优化[J]. 系统工程与电子技术, 2022, 44(9): 2936-2946. |
XU X G, WANG X F, YAO L, et al. Formation configuration and communication topology optimization for fixed-wing UAVs[J]. Systems Engineering and Electronics, 2022, 44(9): 2936-2946 (in Chinese). | |
159 | 李清华, 高影, 王振桓, 等. 一种动态分组的多节点协同定位编队构型优化方法[J]. 中国惯性技术学报, 2022, 30(6): 746-751, 759. |
LI Q H, GAO Y, WANG Z H, et al. A dynamic grouping formation configuration optimization method for multi-node cooperative localization[J]. Journal of Chinese Inertial Technology, 2022, 30(6): 746-751, 759 (in Chinese). | |
160 | REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4): 324-333. |
161 | YU X, LIU L. Cooperative control for moving-target circular formation of nonholonomic vehicles[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3448-3454. |
162 | DONG X W, LI Y F, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3674-3685. |
163 | HUA Y Z, DONG X W, LI Q D, et al. Distributed time-varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1959-1969. |
164 | HUA Y Z, DONG X W, HAN L, et al. Finite-time time-varying formation tracking for high-order multiagent systems with mismatched disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(10): 3795-3803. |
165 | DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3658-3664. |
166 | ZHANG H G, LI W H, ZHANG J, et al. Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7453-7466. |
167 | JI M, FERRARI-TRECATE G, EGERSTEDT M, et al. Containment control in mobile networks[J]. IEEE Transactions on Automatic Control, 2008, 53(8): 1972-1975. |
168 | LIU H Y, XIE G M, WANG L. Necessary and sufficient conditions for containment control of networked multi-agent systems[J]. Automatica, 2012, 48(7): 1415-1422. |
169 | DONG X W, SHI Z Y, LU G, et al. Output containment analysis and design for high-order linear time-invariant swarm systems[J]. International Journal of Robust and Nonlinear Control, 2015, 25(6): 900-913. |
170 | ZUO S, SONG Y D, LEWIS F L, et al. Adaptive output containment control of heterogeneous multi-agent systems with unknown leaders[J]. Automatica, 2018, 92: 235-239. |
171 | LI T S, BAI W W, LIU Q, et al. Distributed fault-tolerant containment control protocols for the discrete-time multiagent systems via reinforcement learning method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 3979-3991. |
172 | MA Y S, CHE W W, DENG C, et al. Observer-based event-triggered containment control for MASs under DoS attacks[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13156-13167. |
173 | DIMAROGONAS D V, EGERSTEDT M, KYRIAKOPOULOS K J. A leader-based containment control strategy for multiple unicycles[C]∥Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2006: 5968-5973. |
174 | DONG X W, HUA Y Z, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229-240. |
175 | JIANG W, WEN G G, PENG Z X, et al. Fully distributed formation-containment control of heterogeneous linear multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(9): 3889-3896. |
176 | HUA Y Z, DONG X W, HAN L, et al. Formation-containment tracking for general linear multi-agent systems with a tracking-leader of unknown control input[J]. Systems & Control Letters, 2018, 122: 67-76. |
177 | SUN Q Q, WANG X Y, CHEN Y H. Satellite formation-containment control emphasis on collision avoidance and uncertainty suppression[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 5121-5134. |
178 | ZHOU P P, CHEN B M. Formation-containment control of euler-lagrange systems of leaders with bounded unknown inputs[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6342-6353. |
179 | 温广辉, 周佳玲, 吕跃祖, 等. 多导弹协同作战中的分布式协调控制问题[J]. 指挥与控制学报, 2021, 7(2): 137-145. |
WEN G H, ZHOU J L, LYU Y Z, et al. Distributed coordination control in multi-missile cooperative tasks[J]. Journal of Command and Control, 2021, 7(2): 137-145 (in Chinese). | |
180 | 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 020256. |
ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020256 (in Chinese). | |
181 | 赵恩娇, 孙明玮. 多飞行器协同作战关键技术研究综述[J]. 战术导弹技术, 2020(4): 175-182. |
ZHAO E J, SUN M W. Review on the key technology of cooperative engagement for multiple flight vehicles[J]. Tactical Missile Technology, 2020(4): 175-182 (in Chinese). | |
182 | 周敏, 王一鸣, 郭建国, 等. 多弹协同末制导方法综述[J]. 航空兵器, 2023, 30(4): 17-25. |
ZHOU M, WANG Y M, GUO J G, et al. A survey of multi-missile cooperative terminal guidance[J]. Aero Weaponry, 2023, 30(4): 17-25 (in Chinese). | |
183 | JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance Control Dynamics, 2010, 33(1): 275-280. |
184 | TSALIK R, SHIMA T. Circular impact-time guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(8): 1836-1847. |
185 | 周聪, 闫晓东, 唐硕. 圆弧预测变系数显式拦截中制导[J]. 航空学报, 2019, 40(10): 323122. |
ZHOU C, YAN X D, TANG S. Explicit guidance law with varying gain and circular prediction for mid-course interception[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 323122 (in Chinese). | |
186 | TANG J C, ZUO Z Y. Cooperative circular guidance of multiple missiles: A practical prescribed-time consensus approach[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(9): 1799-1813. |
187 | ZHAO J, ZHOU R, DONG Z N. Three-dimensional cooperative guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1104-1120. |
188 | YU J L, SHI Z X, DONG X W, et al. Impact time consensus cooperative guidance against the maneuvering target: theory and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4590-4603. |
189 | ZHOU J L, YANG J Y. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2439-2447. |
190 | ZHAO Q L, DONG X W, LIANG Z X, et al. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1570-1581. |
191 | XU S Y, SONG X, LI C Y. Cooperative guidance law with maneuverability awareness: A decentralized solution[J]. Chinese Journal of Aeronautics, 2024, 37(7): 450-457. |
192 | 林德福, 何绍溟, 王江, 等. 基于虚拟领弹-从弹的集群分布式协同制导技术研究[J]. 中国科学(技术科学), 2020, 50(5): 506-515. |
LIN D F, HE S M, WANG J, et al. On virtual leader-follower-based distributed cooperative swarm guidance strategy[J]. Scientia Sinica (Technologica), 2020, 50(5): 506-515 (in Chinese). | |
193 | ZHOU J L, YANG J Y. Guidance law design for impact time attack against moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2580-2589. |
194 | LI G F, WU Y J, XU P Y. Fixed-time cooperative guidance law with input delay for simultaneous arrival[J]. International Journal of Control, 2021, 94(6): 1664-1673. |
195 | KANG S, WANG J N, LI G, et al. Optimal cooperative guidance law for salvo attack: An MPC-based consensus perspective[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2397-2410. |
196 | KIM H G, KIM H J. Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 82-94. |
197 | MUKHERJEE D, KUMAR S R. Field-of-view constrained impact time guidance against stationary targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3296-3306. |
198 | LEE S, CHO N, KIM Y. Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(8): 1566-1574. |
199 | DONG W, WANG C Y, WANG J N, et al. Three-dimensional nonsingular cooperative guidance law with different field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 2001-2015. |
200 | CHEN Y D, GUO D Q, WANG J N, et al. Cooperative circular guidance with nonuniform field-of-view constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1435-1450. |
201 | 蔡洪, 胡正东, 曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2): 315-323. |
CAI H, HU Z D, CAO Y. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics, 2010, 31(2): 315-323 (in Chinese). | |
202 | 李庆春, 张文生, 韩刚. 终端约束条件下末端制导律研究综述[J]. 控制理论与应用, 2016, 33(01): 1-12. |
LI Q C, ZHANG W S, HAN G. Review of terminal guidance law with terminal constraints[J].Control Theory and Technology, 2016, 33(01): 1-12 (in Chinese). | |
203 | KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288. |
204 | 吴鹏, 杨明. 带终端攻击角度约束的变结构制导律[J]. 固体火箭技术, 2008, 31(2): 116-120. |
WU P, YANG M. Variable structure guidance law with terminal attack angle constraint[J]. Journal of Solid Rocket Technology, 2008, 31(2): 116-120 (in Chinese). | |
205 | 陈克俊, 赵汉元. 一种适用于攻击地面固定目标的最优再入机动制导律[J]. 宇航学报, 1994, (01): 1-7,94. |
CHEN L J, ZHAO H Y. An optimal reentry maneuver guidance law for attacking fixed ground targets[J]. Journal of Astronautics, 1994, (01): 1-7,94 (in Chinese). | |
206 | 吕腾, 吕跃勇, 李传江, 等. 带空间协同的多导弹时间协同制导律[J]. 航空学报, 2018, 39(10): 322115. |
Lü/LV/LU/LYU) T, LYU Y Y, LI C J, et al. Time-cooperative guidance law for multiple missiles with spatial cooperation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322115 (in Chinese). | |
207 | 李鹤宇, 王建斌, 张锐, 等. 具有时间和角度约束的欠驱动三维协同制导律[J]. 宇航学报, 2024, 45(10): 1633-1644. |
LI H Y, WANG J B, ZHANG R, et al. Underactuated three-dimensional cooperative guidance law with time and angle constraints[J]. Journal of Astronautics, 2024, 45(10): 1633-1644. | |
208 | 张保峰. 带攻击角度约束的多导弹协同导引律设计[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG B F. Design of cooperative guidance law for multiple missiles with attack angle constraints[D].Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
209 | WANG X L, ZHANG Y A, WU H L. Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint[J]. Aerospace Science and Technology, 2015, 46: 299-311. |
210 | 尤浩, 常新龙, 赵久奋, 等. 带攻击角度约束的三维领弹-从弹时间协同制导律[J]. 兵工学报, 2023, 44(11): 3369-3381. |
YOU H, CHANG X L, ZHAO J F, et al. Three-dimensional leader-follower cooperative guidance law with impact angle constraints[J]. Acta Armamentarii, 2023, 44(11): 3369-3381 (in Chinese). | |
211 | 杨登峰, 闫晓东. 多防御弹主动防御系统协同一致拦截[J]. 战术导弹技术, 2023(5): 73-82. |
YANG D F, YAN X D. Simultaneous and cooperative interception with multiple defense missiles for active defense system[J]. Tactical Missile Technology, 2023(5): 73-82 (in Chinese). | |
212 | 吕腾, 吕跃勇, 李传江, 等. 带视线角约束的多导弹有限时间协同制导律[J]. 兵工学报, 2018, 39(2): 305-314. |
Lü/LV/LU/LYU) T, LYU Y Y, LI C J, et al. Finite time cooperative guidance law for multiple missiles with line-of-sight angle constraint[J]. Acta Armamentarii, 2018, 39(2): 305-314 (in Chinese). | |
213 | 刘大卫, 孙景亮, 龙腾, 等. 弹群分布式一致误差约束自适应最优协同拦截方法[J]. 兵工学报, 2023, 44(9): 2580-2590. |
LIU D W, SUN J L, LONG T, et al. Distributed adaptive optimal cooperative interception method for missile swarm with synchronization error constraints[J]. Acta Armamentarii, 2023, 44(9): 2580-2590 (in Chinese). | |
214 | YU J L, DONG X W, LI QINGDONG, et al. Distributed cooperative encirclement hunting guidance for multiple flight vehicles system[J]. Aerospace Science and Technology, 2019, 95: 105475 |
215 | 江涌, 王林波, 王蒙一, 等. 基于覆盖理论的高速强机动目标协同围捕策略[J]. 工程科学学报, 2024, 46(7): 1169-1178. |
JIANG Y, WANG L B, WANG M Y, et al. Coverage-based cooperative encirclement strategy against high-speed and highly maneuvering targets[J]. Chinese Journal of Engineering, 2024, 46(7): 1169-1178 (in Chinese). | |
216 | 江涌, 王林波, 王蒙一. “群对群” 协同对抗的规划与制导问题研究[J]. 中国科学(技术科学), 2024, 54(3): 377-390. |
JIANG Y, WANG L B, WANG M Y. Planning and guidance challenges in a “group-to-group” collaborative confrontation[J]. Scientia Sinica (Technologica), 2024, 54(3): 377-390 (in Chinese). | |
217 | 肖惟, 于江龙, 董希旺, 等. 过载约束下的大机动目标协同拦截[J]. 航空学报, 2020, 41(S1): 723777. |
XIAO W, YU J L, DONG X W, et al. Cooperative interception against highly maneuvering target with acceleration constraints[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723777 (in Chinese). | |
218 | SU W S, LI K B, CHEN L. Coverage-based three-dimensional cooperative guidance strategy against highly maneuvering target[J]. Aerospace Science and Technology, 2019, 85: 556-566. |
219 | CHEN S W, WANG W, FAN J F. Three-dimensional piecewise cooperative guidance with smooth switching topology[J]. Aerospace Science and Technology, 2024, 150: 109181. |
220 | 张友安, 马培蓓. 带有攻击角度和攻击时间控制的三维制导[J]. 航空学报, 2008, 29(4): 1020-1026. |
ZHANG Y A, MA P B. Three-dimensional guidance law with impact angle and impact time constraints[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1020-1026 (in Chinese). | |
221 | 张友安, 张友根. 多导弹攻击时间与攻击角度两阶段制导[J]. 吉林大学学报(工学版), 2010, 40(5): 1442-1447. |
ZHANG Y A, ZHANG Y G. Two stages guidance to control impact time and impact angle for multi-missiles[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(5): 1442-1447 (in Chinese). | |
222 | 唐杨, 祝小平, 周洲, 等. 一种基于攻击时间和角度控制的协同制导方法[J]. 航空学报, 2022, 43(01): 324844. |
TANG Y, ZHU X P, ZHOU Z, et al. Cooperative guidance method based on impact time and angle control[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(01): 324844 (in Chinese). | |
223 | YU J L, DONG X W, LI Q D, et al. Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 990-1005. |
224 | 田野, 蔡远利, 邓逸凡. 一种带时间协同和角度约束的多导弹三维协同制导律[J]. 控制理论与应用, 2022, 39(5): 788-798. |
TIAN Y, CAI Y L, DENG Y F. A 3D cooperative guidance law for multiple missiles with line-of-sight angle constraint[J]. Control Theory & Applications, 2022, 39(5): 788-798 (in Chinese). | |
225 | 李鹤宇, 王建斌, 张锐, 等. 具有角度和时间约束的固定时间协同制导律[J]. 宇航学报, 2024, 45(3): 462-468. |
LI H Y, WANG J B, ZHANG R, et al. Fixed-time cooperative guidance law with angle and remaining flight time constraints[J]. Journal of Astronautics, 2024, 45(3): 462-468 (in Chinese). | |
226 | 李国飞, 汤清璞, 吴云洁. 从飞行器无导引头的主-从式多飞行器协同制导方法[J]. 兵工学报, 2023, 44(11): 3436-3446. |
LI G F, TANG Q P, WU Y J. Cooperative guidance method of leader and seeker-less follower flight vehicles[J]. Acta Armamentarii, 2023, 44(11): 3436-3446 (in Chinese). | |
227 | 程志强, 李涛, 庞云福, 等. 变速度条件下控制攻击时间和角度的协同制导律[J]. 控制与决策, 2024, 39(5): 1537-1542. |
CHENG Z Q, LI T, PANG Y F, et al. Cooperative guidance law for impact time and angle control with variable speed[J]. Control and Decision, 2024, 39(5): 1537-1542 (in Chinese). | |
228 | 秦钰彧, 夏丰领, 黄国勇. 面向协同的高超声速巡航导弹航迹规划[J]. 探测与控制学报, 2022, 44(03): 102-109. |
QIN Y Y, XIA F L, HUANG G Y. Collaboration-oriented path planning for hypersonic cruise missile[J]. Journal of Detection & Control, 2022,44(03):102-109 (in Chinese). | |
229 | 高源, 胡钰, 陈锦涌, 等. 基于改进预测校正的时间协同再入制导方法[J]. 北京航空航天大学学报, 2024, 50(5): 1721-1730. |
GAO Y, HU Y, CHEN J Y, et al. Improved predictor-corrector guidance method for time-coordination entry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(5): 1721-1730 (in Chinese). | |
230 | 张钰清, 陈长风, 张扬, 等. 带有时间约束的多飞行器协同轨迹规划[J]. 工程科学学报, 2024, 46(9): 1554-1564. |
ZHANG Y Q, CHEN C F, ZHANG Y, et al. Time-coordination entry trajectory planning for multihypersonic vehicles[J]. Chinese Journal of Engineering, 2024, 46(9): 1554-1564 (in Chinese). | |
231 | 姜沾源. 多飞行器协同任务规划与制导方法研究[D]. 长沙: 国防科技大学, 2021. |
JIANG Z Y. Research on cooperative mission planning and guidance method of multi-aircraft[D].Changsha: National University of Defense Technology, 2021 (in Chinese). | |
232 | 王晓芳, 柴劲, 周健. 基于分段贝塞尔曲线的多导弹协同航迹规划[J]. 系统工程与电子技术, 2018, 40(10): 2317-2324. |
WANG X F, CHAI J, ZHOU J. Cooperative path planning for multiple missiles based on piecewise Bezier curve[J]. Systems Engineering and Electronics, 2018, 40(10): 2317-2324 (in Chinese). | |
233 | SUN J L, LIU C S, YE Q. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming[J]. International Journal of Control, 2017, 90(5): 990-1004. |
234 | 于江龙, 董希旺, 李清东, 等. 基于微分对策的拦截机动目标协同制导方法[J]. 指挥与控制学报, 2020, 6(3): 217-222. |
YU J L, DONG X W, LI Q D, et al. Cooperative differential game guidance method for intercepting maneuvering target[J]. Journal of Command and Control, 2020, 6(3): 217-222 (in Chinese). | |
235 | 徐曙阳, 姚雨晗, 李超勇. 一种基于采样追逃博弈的协同导引律设计[J]. 飞行力学, 2022, 40(06): 44-50. |
CHEN S Y, YAO Y H, LI C Y. A cooperative guidance law design based on sampled-data-pursuit-evasion game[J]. Flight Dynamics, 2022, 40(06): 44-50 (in Chinese). | |
236 | 胡艳艳, 张莉, 夏辉, 等. 不完全信息下基于微分对策的机动目标协同捕获[J]. 航空学报, 2022, 43(S1): 726905. |
HU Y Y, ZHANG L L, XIA H, et al. Cooperative capture of maneuvering targets with incomplete information based on differential game[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726905 (in Chinese). | |
237 | 苏山, 谢永杰, 白瑜亮, 等. 微分对策协同对抗制导律方法研究[J]. 空天防御, 2022, 5(02): 58-64. |
SU S, XIE Y J, BAI Y L, et al. Research on differential game cooperative confrontation guidance law method[J]. Air and space defense, 2022,5(02):58-64 (in Chinese). | |
238 | 胡艳艳, 林旭锋, 张艳玲, 等. 基于微分对策的多飞行器协同捕获空间划分[J]. 兵工自动化, 2023, 42(8): 55-60. |
HU Y Y, LIN X F, ZHANG Y L, et al. Partition of cooperative acquisition space for multiple aircrafts based on differential game[J]. Ordnance Industry Automation, 2023, 42(8): 55-60 (in Chinese). | |
239 | SHIMA T. Optimal cooperative pursuit and evasion strategies against a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 414-425. |
240 | RUBINSKY S, GUTMAN S. Three-player pursuit and evasion conflict[J]. Journal of Guidance, Control, and Dynamics, 2013, 37(1): 98-110. |
241 | 丁一波, 毛伟, 王小刚, 等. 三体追逃攻防博弈分析与新型拦截制导律研究[J]. 宇航总体技术, 2018, 2(6): 10-18. |
DING Y B, MAO W, WANG X G, et al. Analysis for pursuit and evasion conflict of three players and research of novel intercepting guidance law[J]. Astronautical Systems Engineering Technology, 2018, 2(6): 10-18 (in Chinese). | |
242 | LIU F, DONG X W, LI Q D, et al. Cooperative differential games guidance laws for multiple attackers against an active defense target[J]. Chinese Journal of Aeronautics, 2022, 35(5): 374-389. |
243 | 孙磊, 付斌, 万士正, 等. 基于自适应动态规划的反高超武器微分对策制导律[J]. 航空工程进展, 2020, 11(6): 796-802, 826. |
SUN L, FU B, WAN S Z, et al. Differential game guidance law based on adaptive dynamic programming for the interception of hypersonic targets[J]. Advances in Aeronautical Science and Engineering, 2020, 11(6): 796-802, 826 (in Chinese). | |
244 | 肖增博, 雷虎民, 滕江川, 等. 目标飞行器反拦截协同制导策略[J]. 兵工学报, 2011, 32(12): 1486-1492. |
XIAO Z B, LEI H M, TENG J C, et al. Cooperative guidance strategy in anti-interception for target aircrafts[J]. Acta Armamentarii, 2011, 32(12): 1486-1492 (in Chinese). | |
245 | 陈洁卿, 孙瑞胜, 陈伟. 超声速导弹群协同博弈突防制导研究[J]. 无人系统技术, 2021, 4(06): 65-74. |
CHEN J Q, SUN R S, CHEN W. Search on cooperative penetration game guidance of supersonic missile group[J]. Unmanned Systems Technolog, 2021, 4(06): 65-74 (in Chinese). | |
246 | 武林. 多飞行器协同突防策略设计[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
WU L. Design of cooperative penetration strategy for multi-aircraft[D].Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
247 | 王昌平, 方峰, 王振亚, 等. 增强探测信息可观测性的主动防御滑模协同突防制导律[J]. 导弹与航天运载技术(中英文), 2024, (02): 51-58. |
WANG C P, FANG F, WANG Z Y, et al. Sliding-mode-control based cooperative guidance law in active aircraft defense for measurement observability enhancement[J]. Missiles and Space Vehicles, 2024(2): 51-58 (in Chinese). | |
248 | 卫长竖, 赵斌, 赵瑞, 等. 线偏差控制的协同机动突防、 导引与控制一体化[J]. 宇航学报, 2024, 45(06): 924-934. |
WEI C J, ZHAO B, ZHAO R, et al. Line deviation control of cooperative maneuvering penetration, guidance and control integration[J]. Journal of Astronautics, 2024, 45(06): 924-934 (in Chinese). | |
249 | 方洋旺, 邓天博, 符文星. 智能制导律研究综述[J]. 无人系统技术, 2020, 3(06): 36-42. |
FANG Y W, DENG T B, FU W X. An overview on the intelligent guidance law[J]. Unmanned Systems Technology, 2020, 3(06): 36-42 (in Chinese). | |
250 | 张豪, 朱建文, 李小平, 等. 针对高机动目标的深度强化学习智能拦截制导[J/OL]. 北京航空航天大学学报,(2023-09-27)[2024-07-05]. . |
ZHANG H, ZHU J W, LI X P, et al. Deep reinforcement learning intelligent guidance for intercepting high maneuvering targets[J/OL]. Journal of Beijing University of Aeronautics and Astronautics (2023-09-27)[2024-07-05]. (in Chinese). | |
251 | 赵亮博, 朱广生, 张耀, 等. 智能飞行器追逃博弈中的关键技术及发展趋势[J]. 飞航导弹, 2021(12): 134-139. |
ZHAO L B, ZHU G S, ZHANG Y, et al. Key technology and development trend of intelligent aircraft pursuit game[J]. Aerodynamic Missile Journal, 2021(12): 134-139 (in Chinese). | |
252 | 陈万春,陈中原,龚晓鹏.智能机动突防策略研究进展[J]. 飞行力学, 2024,42(199):1-9. |
CHEN W C, CHEN Z Y, GONG X P. Advances in the study of intelligent maneuver penetration strategy[J]. Flight Dynamics, 2024, 42(199): 1-9 (in Chinese). | |
253 | GAUDET B, FURFARO R, LINARES R. Reinforcement learning for angle-only intercept guidance of maneuvering targets[J]. Aerospace Science and Technology, 2020, 99: 105746. |
254 | 郑成辰. 基于深度强化学习的约束末制导律研究[D]. 成都: 四川大学, 2023. |
ZHENG C C. Research on constrained terminal guidance law based on deep reinforcement learning[D].Chengdu: Sichuan University, 2023 (in Chinese). | |
255 | 陈中原, 韦文书, 陈万春. 基于强化学习的多发导弹协同攻击智能制导律[J]. 兵工学报, 2021, 42(8): 1638-1647. |
CHEN Z Y, WEI W S, CHEN W C. Reinforcement learning-based intelligent guidance law for cooperative attack of multiple missiles[J]. Acta Armamentarii, 2021, 42(8): 1638-1647 (in Chinese). | |
256 | 倪炜霖, 王永海, 徐聪, 等. 基于强化学习的高超飞行器协同博弈制导方法[J]. 航空学报, 2023, 44(S2): 729400 |
NI W L, WANG Y H, XU C, et al. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning[J]. Acta Aeronautica ET Astronautica Sinica, 2023, 44(S2): 729400 (in Chinese). | |
257 | 高树一, 林德福, 郑多, 等. 针对集群攻击的飞行器智能协同拦截策略[J]. 航空学报, 2023, 44(18): 328301. |
GAO S Y, LIN D F, ZHENG D, et al. Intelligent cooperative interception strategy of aircraft against cluster attack[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328301 (in Chinese). | |
258 | 王金强, 苏日新, 刘莉, 等. Q-learning强化学习协同拦截制导律[J]. 导航定位与授时, 2022, 9(5): 84-90. |
WANG J Q, SU R X, LIU L, et al. Cooperative interception guidance law based on reinforcement learning of Q-learning[J]. Navigation Positioning and Timing, 2022, 9(5): 84-90 (in Chinese). | |
259 | 刘子超, 王江, 何绍溟. 基于深度学习的时间角度控制制导律[J]. 系统工程与电子技术, 2023, 45(11): 3579-3587. |
LIU Z C, WANG J, HE S M. Time and angle control guidance law based on deep learning[J]. Systems Engineering and Electronics, 2023, 45(11): 3579-3587 (in Chinese). | |
260 | 刘子超, 王江, 王鹏, 等. 时间约束多导弹协同制导律[J]. 航空学报, 2024, 45(S1): 730607. |
LIU Z C, WANG J, WANG P, et al. Time-constrained multi-missile cooperative guidance law[J]. Acta Aeronautica et Astronautica Sinica, ,2024,45(S1):730607 (in Chinese). | |
261 | 金泽宇, 刘凯, 尹中杰, 等. 基于神经网络剩余时间模型的协同制导律设计[J]. 战术导弹技术, 2021(4): 103-109, 116. |
JIN Z Y, LIU K, YIN Z J, et al. Impact time cooperation guidance law design based on time-to-go estimating model using neural network[J]. Tactical Missile Technology, 2021(4): 103-109, 116 (in Chinese). |
/
〈 |
|
〉 |