ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A review of fault analysis and diagnosis methods for rotating rectifier in aircraft starter/generator
Received date: 2024-03-18
Revised date: 2024-04-15
Accepted date: 2024-07-08
Online published: 2024-07-23
Supported by
Provincial or Ministerial Level Project
Aircraft starter/generator, meeting the lightweight and high integration requirements of more electric aircraft for aircraft power supply system, has been widely studied. Fault diagnosis of its components is crucial to ensuring the safe, stable and efficient operation of aircraft power supply system. As the most prone component to failure, rotating rectifier’s fault diagnosis is of great practical significance. This paper systematically reviews current researches on rotating rectifier fault diagnosis methods. Firstly, the development status is summarized both domestically and internationally from four perspectives: fault modeling, fault signal processing, intelligent algorithm application and industrial fault detection technology. Secondly, the common diode faults and fault transfer path in rotating rectifier are introduced, along with some difficult points of fault diagnosis in practice. Then, analyzing fault mechanism and starting from the different ways to acquire fault electrical signal, existing fault diagnosis methods of rotating rectifier are classified and summarized. Their advantages, disadvantages and application scope are discussed in depth. Finally, a comprehensive outlook on the future development trends of rotating rectifier fault diagnosis is provided to offer insights and references for colleagues interested in this field.
Ting WANG , Haoxuan ZHOU , Xiaobin ZHANG , Weilin LI , Wenping CAO . A review of fault analysis and diagnosis methods for rotating rectifier in aircraft starter/generator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(23) : 30405 -030405 . DOI: 10.7527/S1000-6893.2024.30405
1 | SARLIOGLU B, MORRIS C T. More electric aircraft: review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1): 54-64. |
2 | 郑先成, 张晓斌, 黄铁山. 国外飞机电气技术的现状及对我国多电飞机技术发展的考虑[J]. 航空计算技术, 2007, 37(5): 120-122, 126. |
ZHENG X C, ZHANG X B, HUANG T S. States of foreign aircraft electric technologies and consideration on our aircraft electric technologic developments[J]. Aeronautical Computing Technique, 2007, 37(5): 120-122, 126 (in Chinese). | |
3 | BARZKAR A, GHASSEMI M. Electric power systems in more and all electric aircraft: a review[C]∥ IEEE Access. Piscataway: IEEE Press, 2020: 169314-169332. |
4 | CAO W P, MECROW B C, ATKINSON G J, et al. Overview of electric motor technologies used for more electric aircraft (MEA)[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3523-3531. |
5 | 张卓然, 于立, 李进才,等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
6 | 新华网. 原因未明!美军无人机坠毁事故激增[EB/OL]. (2016-01-22) [2024-05-06]. . |
Xinhuanet. Unknown reason! The number of U.S. military UAV crashes had increased sharply[EB/OL]. (2016-01-22) [2024-05-06]. (in Chinese). | |
7 | 视频中国. 美国波音787交付8天内故障致紧急迫降[EB/OL]. (2012-12-07) [2024-05-06]. . |
V | China. U.S. Boeing 787 forced to make emergency landing 8 days after delivery[EB/OL]. (2012-12-07) [2024-05-06]. (in Chinese). |
8 | 新华社. 港澳台:马航吉隆坡飞首尔客机紧急降落香港机场[EB/OL]. (2014-03-24) [2024-05-06]. . |
The Xinhua News Agency. Hong Kong, Macao and Taiwan regions of China: Malaysia Airlines flight from Kuala Lumpur to Seoul made emergency landing at Hong Kong airport[EB/OL]. (2014-03-24) [2024-05-06]. (in Chinese). | |
9 | 环球网. 中国台湾中华航空一架航班因发动机故障临时迫降日本福冈[EB/OL]. (2017-08-15) [2024-05-06]. . |
Huanqiu. A China Airlines flight from Taiwan of China made an emergency landing in Fukuoka, Japan due to engine failure[EB/OL]. (2017-08-15) [2024-05-06]. (in Chinese). | |
10 | 大纪元新闻网. 发电机故障中国台F-16 战机迫降清泉岗[EB/OL]. (2016-12-19) [2024-05-06]. . |
Epochtimes. Taiwan of China F-16 fighter jet made an emergency landing at Ching Chuan Kang due to generator failure[EB/OL]. (2016-12-19) [2024-05-06]. (in Chinese). | |
11 | WANG Y L, NUZZO S, ZHANG H, et al. Challenges and opportunities for wound field synchronous generators in future more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1466-1477. |
12 | N?LAND J K, NUZZO S, TESSAROLO A, et al. Excitation system technologies for wound-field synchronous machines: survey of solutions and evolving trends[J]. IEEE Access, 2019, 7: 109699-109718. |
13 | JIAO N F, LI Z J, MAO S, et al. Aircraft brushless wound-rotor synchronous starter-generator: a technology review[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 7558-7574. |
14 | 朱德明, 李进才, 韩建斌, 等. 起动发电机在中国大型客机上的应用[J]. 航空学报, 2019, 40(1): 522479. |
ZHU D M, LI J C, HAN J B, et al. Application prospect of starter/generator on large civil aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522479 (in Chinese). | |
15 | BATZEL T D, SWANSON D C, DEFENBAUGH J F. Predictive diagnostics for the main field winding and rotating rectifier assembly in the brushless synchronous generator[C]∥ 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003 SDEMPED. Piscataway: IEEE Press, 2003: 349-354. |
16 | BATZEL T D, SWANSON D C. Prognostic health management of aircraft power generators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 473-482. |
17 | KELLER K, SWEARINGEN K, SHEAHAN J, et al. Aircraft electrical power systems prognostics and health management[C]∥ 2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006:1-12. |
18 | MOSTAFAEI M, FAIZ J. An overview of various faults detection methods in synchronous generators[J]. IET Electric Power Applications, 2021, 15(4): 391-404. |
19 | XIAO Q, JIN Y, JIA H J, et al. Review of fault diagnosis and fault-tolerant control methods of the modular multilevel converter under submodule failure[J]. IEEE Transactions on Power Electronics, 2023, 38(10): 12059-12077. |
20 | 严如强, 许文纲, 王志颖 等. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
YAN R Q, XU W G, WANG Z Y, et al. Research status and challenges on fault diagnosis methodology for fuel control system of aero-engine[J]. Journal of Mechanical Engineering, 2024, 60(4): 3-31 (in Chinese). | |
21 | YIN Z Y, HU N Q, CHEN J G, et al. A review of fault diagnosis, prognosis and health management for aircraft electromechanical actuators[J]. IET Electric Power Applications, 2022, 16(11): 1249-1272. |
22 | ZHANG S N, KANG R, GANG N, et al. Status of research and development on prognostics and health management in China[C]∥ 2010 Prognostics and System Health Management Conference. Piscataway: IEEE Press, 2010: 1-5. |
23 | LI X Y. A microprocessor-based fault monitor for rotating rectifiers of brushless ac exciters using a pattern-recognition approach[J]. Electric Machines and Power Systems, 1996, 24(2): 189-198. |
24 | ZOUAGHI T, POLOUJADOFF M. Modeling of polyphase brushless exciter behavior for failing diode operation[J]. IEEE Transactions on Energy Conversion, 1998, 13(3): 214-220. |
25 | TANTAWY A, KOUTSOUKOS X, BISWAS G. Aircraft power generators: hybrid modeling and simulation for fault detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 552-571. |
26 | BUI H K, BRACIKOWSKI N, HECQUET M, et al. Simulation of a large power brushless synchronous generator (BLSG) with a rotating rectifier by a reluctance network for fault analysis and diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4327-4337. |
27 | RAHNAMA M, VAHEDI A. Rotary diode failure detection in brushless exciter system of power plant synchronous generator[C]∥ 2016 6th Conference on Thermal Power Plants (CTPP). Piscataway: IEEE Press, 2016: 6-11. |
28 | BOJAR A, VAHEDI A, RAHNAMA M. Rotating rectifier fault detection using exciter modelling in a brushless synchronous generator[C]∥ AIP Conference Proceedings. AIP Publishing, 2023. |
29 | 马远航, 张晓斌, 高朝晖. 飞机同步发电机的建模仿真方法研究[J]. 微电机, 2014, 47(10): 58-61, 88. |
MA Y H, ZHANG X B, GAO Z H. Modeling and simulation of aircraft synchronous generator[J]. Micromotors, 2014, 47(10): 58-61, 88 (in Chinese). | |
30 | 李冰洁, 张晓斌, 吴小华, 等. 基于Dymola及Modelica语言的飞机三级发电机的建模与仿真[J]. 微电机, 2016, 49(3): 40-44. |
LI B J, ZHANG X B, WU X H, et al. Modeling and simulation of aircrafts three-stage synchronous generator based on dymola and modelica language[J]. Micromotors, 2016, 49(3): 40-44 (in Chinese). | |
31 | 梁波, 李玉忍, 薛梦娇. 飞机三级式发电系统建模与仿真[J]. 计算机仿真, 2013, 30(2): 71-75. |
LIANG B, LI Y R, XUE M J. Modeling and simulation of three-stage aircraft synchronous generator system[J]. Computer Simulation, 2013, 30(2): 71-75 (in Chinese). | |
32 | SHI X D, LI P J, ZHU J J, et al. Modeling and feather extraction of rotating rectifier faults of aircraft integrated drive generator[J]. Journal of Applied Sciences, 2013, 13(16): 3128-3136. |
33 | 李鹏举. 飞机主发电机建模与旋转整流器故障仿真方法研究[D]. 天津: 中国民航大学, 2014. |
LI P J. Research of modeling of aircraft generator and fault simulation methods of rotating rectifier[D].Tianjin: Civil Aviation University of China, 2014 (in Chinese). | |
34 | HUANG C, YUAN H W, MA Z, et al. The fault diagnosis of aircraft power system based on inverse problem of fuzzy optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(6): 1059-1074. |
35 | ZHANG S K, WANG F C, SUN D J, et al. Fault analysis and feature extraction of rotary rectifier of aviation three-stage generator[C]∥ International Conference on Clean Energy and Electrical Systems. Singapore: Springer, 2023: 79-94. |
36 | 刘念, 谢驰. 无刷励磁同步发电机旋转整流器故障的模糊神经网络诊断[J]. 继电器, 2003, 31(8): 8-11. |
LIU N, XIE C. Diagnosis of fuzzy neural network for rotating rectifier Faults of generators with Brushless excitation[J]. Relay, 2003, 31(8): 8-11 (in Chinese). | |
37 | 刘念, 谢驰. 无刷同步发电机旋转整流器故障监测新方法研究[J]. 电工技术杂志, 2000, 19(8): 16. |
LIU N, XIE C. Study of a new method for monitoring rotating rectifier faults of generators with brushless excitation [J]. Electrotechnical Application, 2000, (8): 16-18 (in Chinese). | |
38 | 武玉才, 孙淑琼. 多相无刷励磁机旋转二极管开路故障在线检测方法[J]. 中国电力, 2023, 56(8): 99-108. |
WU Y C, SUN S Q. Online detection method of open circuit fault of rotating diode in multi-phase brushless exciter[J]. Electric Power, 2023, 56(8): 99-108 (in Chinese). | |
39 | 武玉才, 庞永林, 侯旭辰. 中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法[J]. 电机与控制学报, 2021, 25(5): 42-51. |
WU Y C, PANG Y L, HOU X C. On-line detection method for rotating rectifier bridge diode open-circuit fault of small and medium-sized brushless excitation synchronous generator set[J]. Electric Machines and Control, 2021, 25(5): 42-51 (in Chinese). | |
40 | SUN C H, LIU W G, JIA Q, et al. On-line fault diagnosis for rotating rectifier in wound-rotor synchronous starter/generator using idle field winding[C]∥ 2020 23rd International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2020: 1336-1340. |
41 | MCARDLE M G, MORROW D J. Noninvasive detection of brushless exciter rotating diode failure[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 378-383. |
42 | SALAH M, BACHA K, CHAARI A. Detection of brushless exciter rotating diodes failures by spectral analysis of main output voltage[C]∥ 2013 International Conference on Electrical Engineering and Software Applications. Piscataway: IEEE Press, 2013: 1-6. |
43 | SALAH M, BACHA K, CHAARI A, et al. Brushless three-phase synchronous generator under rotating diode failure conditions[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 594-601. |
44 | 张超, 夏立. 基于谐波分析的旋转整流器故障检测[J]. 电机与控制应用, 2008, 35(11): 51-54. |
ZHANG C, XIA L. Fault detection of rotary rectifier based on harmonic analysis[J]. Electric Machines & Control Application, 2008, 35(11): 51-54 (in Chinese). | |
45 | 张超, 夏立. 发电机旋转整流器故障的分形和动态测度诊断[J]. 电机与控制学报, 2009, 13(1): 6-10. |
ZHANG C, XIA L. Fault diagnosis of generator rotating rectifier based on fractal and Dynamics[J]. Electric Machines and Control, 2009, 13(1): 6-10 (in Chinese). | |
46 | 刘勇智, 刘聪. 基于EMD 和LS-SVM 的旋转整流器故障诊断方法研究[J]. 微电机, 2012, 45(4): 21-24. |
LIU Y Z, LIU C. Fault diagnosis of rotating rectifier based on EMD and LS-SVM[J]. Micromotors, 2012, 45(4): 21-24 (in Chinese). | |
47 | 张敬, 李颖晖, 朱喜华 等. 三级式发电机旋转整流器故障特征提取[J]. 微电机, 2011, 44(7): 92-96. |
ZHANG J, LI Y H, ZHU X H, et al. Fault feature excitation for rotating rectifier of three-stage generator[J]. Micromotors, 2011, 44(7): 92-96 (in Chinese). | |
48 | ZHANG Z, LIU W G, PENG J C, et al. Identification of TBAES rotating diode failure[J]. IET Electric Power Applications, 2017, 11(2): 260-271. |
49 | PANG J, LIU W G, WEI Z H, et al. Online diode fault detection in rotating rectifier of the brushless synchronous starter generator[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6943-6951. |
50 | WEI Z H, LIU W G, ZHANG Z, et al. Rotating rectifier fault detection method of wound-rotor synchronous starter-generator with three-phase exciter[J]. The Journal of Engineering, 2018, 2018 (13): 524-528. |
51 | 刘念, 谢驰, 王涛, 等. 基于免疫算法的无刷励磁发电机旋转整流器故障诊断[J]. 电力自动化设备, 2007, 27(5): 32-35. |
LIU N, XIE C, WANG T, et al. Immune algorithm in rotating rectifier fault diagnosis of brushless generator[J]. Electric Power Automation Equipment, 2007, 27(5): 32-35 (in Chinese). | |
52 | THIRUKOVALLURU R, DIXIT S, SEVAKULA R K, et al. Generating feature sets for fault diagnosis using denoising stacked auto-encoder[C]∥ 2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Piscataway: IEEE Press, 2016: 1-7. |
53 | GRAY D, ZHANG Z A, APOSTOAIA C, et al. A neural network based approach for the detection of faults in the brushless excitation of a synchronous motor[C]∥ 2009 IEEE International Conference on Electro/Information Technology. Piscataway: IEEE Press, 2009: 423-428. |
54 | 薄海涛, 白振兴. 基于故障树和神经网络的飞机电源系统故障诊断[J]. 自动化与仪表, 2005, 20(4): 65-67. |
BO H T, BAI Z X. Fault diagnosis of aircraft electric power system based on fault tree and neural network[J]. Automation & Instrumentation, 2005, 20(4): 65-67 (in Chinese). | |
55 | 唐军祥, 崔江. 一种无刷同步发电机旋转整流器故障快速识别方法[J]. 计算机与现代化, 2017(10): 66-71. |
TANG J X, CUI J. A fast fault recognition method of brushless synchronous generator rotating rectifier[J]. Computer and Modernization, 2017(10): 66-71 (in Chinese). | |
56 | 崔江, 唐军祥, 张卓然, 等. 基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J]. 中国电机工程学报, 2018, 38(8): 2458-2466. |
CUI J, TANG J X, ZHANG Z R, et al. Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J]. Proceedings of the CSEE, 2018, 38(8): 2458-2466 (in Chinese). | |
57 | 孟飒飒, 孔德明, 崔江, 等. 基于DBN的航空发电机旋转整流器故障诊断方法[J]. 航空计算技术, 2018, 48(4): 105-108, 111. |
MENG S S, KONG D M, CUI J, et al. Fault detection method of aircraft generator rotating rectifier based on DBN[J]. Aeronautical Computing Technique, 2018, 48(4): 105-108, 111 (in Chinese). | |
58 | 崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40(7): 2369-2376. |
CUI J, GUO R D, ZHANG Z R, et al. Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40(7): 2369-2376 (in Chinese). | |
59 | 崔江, 冯赛, 张卓然,等. 基于 BLS 的无刷发电机旋转整流器特征提取技术研究[J]. 中国电机工程学报, 2020, 40(12): 4004-4013. |
CUI J, FENG Q, ZHANG Z R, et al. Research on feature extraction technology of brushless generator rotating rectifier based on BLS[J]. Proceedings of the CSEE, 2020, 40(12): 4004-4013 (in Chinese). | |
60 | 程延伟, 谢永成, 李光升. 基于支持向量机的旋转整流桥故障诊断[J]. 计算机测量与控制, 2011, 19(3): 516-518. |
CHENG Y W, XIE Y C, LI G S. Fault diagnosis of rotating rectifier bridge based on SVM[J]. Computer Measurement & Control, 2011, 19(3): 516-518 (in Chinese). | |
61 | LORD D H, GLEASON D. Design & evaluation methodology for built-in-test[J]. IEEE Transactions on Reliability, 1981, 30(3): 222-226. |
62 | 王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6): 1459-1472. |
WANG S P. Prognostics and health management key technology of aircraft airborne system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1459-1472 (in Chinese). | |
63 | 王海峰. 战斗机故障预测与健康管理技术应用的思考[J]. 航空科学技术, 2020, 31(7): 3-11. |
WANG H F. Research on application of prognostics and health management technology for fighter aircraft[J]. Aeronautical Science & Technology, 2020, 31(7): 3-11 (in Chinese). | |
64 | 艾凤明, 梁兴壮, 董润, 等. 军用飞机供配电系统故障预测与健康管理关键技术[J]. 航空科学技术, 2023, 34(2): 86-95. |
AI F M, LIANG X Z, DONG R, et al. Key technologies of prognostic and health management of military aircraft power supply and distribution system[J]. Aeronautical Science & Technology, 2023, 34(2): 86-95 (in Chinese). | |
65 | 中国民用航空网. 大飞机C919将装备具有自主知识产权的PHM系统[EB/OL]. (2016-12-19) [2024-05-09]. . |
Ccaonline. The big plane C919 will be equipped with a PHM system with independent intellectual property rights[EB/OL]. (2016-12-19) [2024-05-09]. (in Chinese). | |
66 | 李小宁, 高朝晖, 王爽, 等. 飞机主电源系统关键器件健康状态评估研究[J]. 电气工程学报, 2023, 18(4): 188-198. |
LI X N, GAO Z H, WANG S, et al. Research on health assessment method of key components in aircraft main power system[J]. Journal of Electrical Engineering, 2023, 18(4): 188-198 (in Chinese). | |
67 | 汤孝, 高朝晖, 郗展, 等. 航空发电机健康特征参数与老化模式分析[J]. 航空科学技术, 2021, 32(6): 27-35. |
TANG X, GAO Z H, XI Z, et al. Analysis on health characteristic parameters and aging mode of aerospace generator[J]. Aeronautical Science & Technology, 2021, 32(6): 27-35 (in Chinese). | |
68 | 杨林. 无刷励磁机旋转二极管断相试验研究[J]. 电工技术, 2013(1): 1-3. |
YANG L. Experimental study on phase failure of rotating diode of brushless exciter[J]. Electric Engineering, 2013(1): 1-3 (in Chinese). | |
69 | 袁金, 刘国强, 陈晓义, 等. 霍尔元件用于无刷励磁旋转二极管故障在线监测[J]. 电机技术, 2013(1): 22-26, 34. |
YUAN J, LIU G Q, CHEN X Y, et al. Hall elements used in online monitoring to the default of rotating rectifier in the large-size brushless exciter[J]. Electrical Machinery Technology, 2013(1): 22-26, 34 (in Chinese). | |
70 | 王如海. 无刷励磁机旋转二极管故障试验探讨[J]. 四川电力技术, 1999, 22(3): 54-57. |
WANG R H. Test method discussion for rotating diode fault of brushless excitation[J]. Sichuan Electric Power Technology, 1999, 22(3): 54-57 (in Chinese). | |
71 | 郭瑞东, 陈燕, 崔江. 基于FPGA的同步发电机旋转整流器故障监测系统[J]. 微特电机, 2021, 49(3): 47-49, 55. |
GUO R D, CHEN Y, CUI J. Fault monitoring system of synchronous generator rotating rectifier based on FPGA[J]. Small & Special Electrical Machines, 2021, 49(3): 47-49, 55 (in Chinese). | |
72 | 孟飒飒, 师鸽, 崔江. 基于 DSP 的航空发电机旋转整流器诊断技术研究[J]. 航空计算技术, 2018, 48(1): 123-126. |
MENG S S, SHI G, CUI J. Research on diagnostic technology of aircraft generator rotating rectifier based on DSP[J]. Aeronautical Computing Technique, 2018, 48(1): 123-126 (in Chinese). | |
73 | 刘建英, 董慧芬. 旋转整流器及励磁电路故障双功能和双余度监测电路: CN103852669A[P]. 2017-07-04. |
LIU J Y, DONG H F. Dual function and dual margin monitoring circuit for rotating rectifier and excitation circuit faults: CN103852669A[P]. 2017-07-04 (in Chinese). | |
74 | LIU J Y, GAO K, LIU P F. Design and application for fault monitoring circuit of rotating rectifier in aviation brushless AC generator[C]∥ Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2014: 1235-1239. |
75 | ZHU W, MA W M, YANG X D, et al. A fault diagnostic method of 24-pulse uncontrolled diode rectifier based on the voltage waveform analysis[C]?∥Proceedings of the 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016). Paris: Atlantis Press, 2016: 846-852. |
76 | LEE J U, BAEK S W, CHO K Y, et al. Fault detection of three phase diode rectifier based on harmonic ratio of DC-link voltage ripples[C]∥ 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS). Piscataway: IEEE Press, 2017: 386-391. |
77 | RAHIMINEJAD M, DIDUCH C, STEVENSON M, et al. Open-circuit fault diagnosis in 3-phase uncontrolled rectifiers[C]∥ 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Piscataway: IEEE Press, 2012: 254-259. |
78 | IORGULESCU M. Study of three-phase bridge rectifier diagnosis based on output voltage and current analysis[C]∥ 2013 8th International Symposium On Advanced Topics In Electrical Engineering (ATEE). Piscataway: IEEE Press, 2013: 1-6. |
79 | JIAO N F, LIU W G, MENG T, et al. Design and control of a two-phase brushless exciter for aircraft wound-rotor synchronous starter/generator in the starting mode[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4452-4461. |
80 | LIU N, LIU Y, XIE C. Fuzzy recognition processing of complex fault signals from the rotating electric circuit in synchronous generators[J]. International Journal of Electrical Power & Energy Systems, 2013, 49: 354-358. |
81 | WU Y C, CAI B C, MA Q Q. An online diagnostic method for rotary diode open-circuit faults in brushless exciters[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1677-1685. |
82 | WU Y C, CAI B C, MA Q Q. Research on an online diagnosis for rotating diode faults in three-phase brushless exciter with two coils[J]. IET Electric Power Applications, 2019, 13(1): 101-109. |
83 | SUN C H, LIU W G, HAN X, et al. Fault diagnosis of a rotating rectifier in a wound-rotor synchronous starter/generator in the generation mode[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4569-4582. |
84 | SUN C H, LIU W G, DUAN X L, et al. Rotating rectifier failure detection for brushless synchronous starter/generator in the generator mode[C]∥ IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 2720-2724. |
85 | KJAER P C, KJELLQVIST T, DELALOYE C. Estimation of field current in vector-controlled synchronous machine variable-speed drives employing brushless asynchronous exciters[J]. IEEE Transactions on Industry Applications, 2005, 41(3): 834-840.[LinkOut] |
86 | WEI Z H, LIU W G, PANG J, et al. Fault diagnosis of rotating rectifier based on waveform distortion and polarity of current[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2356-2367. |
87 | SUN C H, LIU W G, WEI Z H, et al. Open-circuit fault diagnosis of rotating rectifier by analyzing the exciter armature current[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6373-6385. |
88 | JIAO N F, HAN X, WEI Z H, et al. Online fault diagnosis for rotating rectifier in wound-rotor synchronous starter-generator based on geometric features of current trajectory[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2952-2963. |
89 | ZHU P R, LIU Y Z, FAN B J. Fault diagnosis of the rotating rectifier diode over a TSSM based on the armature current calculation and similarity measurement[J]. IEEE Access, 2022, 10: 48031-48038. |
90 | 王瑾, 严仰光. 旋转整流器式无刷交、直流发电机谐波电枢反应研究[J]. 南京航空航天大学学报, 2000, 32(3): 257-262. |
WANG J, YAN Y G. Study on harmonic armature reaction of brushless AC & DC generator[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2000, 32(3): 257-262 (in Chinese). | |
91 | LI Y, ZHANG C. Simulation of harmonic armature reaction in synchronous brushless excitation[C]∥ 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC). Piscataway: IEEE Press, 2011: 4304-4306. |
92 | TIAN M M, LI Q F. Harmonic analysis of the exciter's exciting current of a brushless AC generator with a rotary rectifier[C]∥ The 4th International Power Electronics and Motion Control Conference (IPEMC 2004). Piscataway: IEEE Press, 2004: 669-672. |
93 | 陈东华, 张凤雏. 基于傅里叶变换的同步交流发电机旋转整流器故障诊断[J]. 机械制造与自动化, 2017, 46(4): 205-208. |
CHEN D H, ZHANG F C. Fault diagnosis of synchronous AC generator rotating rectifier based on Fourier transform[J]. Machine Building & Automation, 2017, 46(4): 205-208 (in Chinese). | |
94 | 陈亮. 无刷励磁系统旋转二极管故障的在线监测[J]. 云南电力技术, 2014, 42(2): 92-97. |
CHEN L. Research on the on-line monitoring for rotating diode failure of brushless excitation system[J]. Yunnan Electric Power, 2014, 42(2): 92-97 (in Chinese). | |
95 | SUN S, WU Y F, CAI W, et al. Fault diagnosis of rotating rectifier based on harmonic features[J]. IOP Conference Series: Materials Science and Engineering, 2017, 199: 012146. |
96 | 孙硕, 叶志浩, 欧阳斌, 等. 旋转整流器断路故障诊断分析[J]. 海军工程大学学报, 2015, 27(2): 46-50. |
SUN S, YE Z H, OUYANG B, et al. Fault diagnosis and analysis of rotating rectifier breakage[J]. Journal of Naval University of Engineering, 2015, 27(2): 46-50 (in Chinese). | |
97 | SOTTILE J, TRUTT F C, LEEDY A W. Condition monitoring of brushless three-phase synchronous generators with stator winding or rotor circuit deterioration[J]. IEEE Transactions on Industry Applications, 2006, 42(5): 1209-1215. |
98 | 刘繁, 崔江, 林华. 一种航空发电机旋转整流器故障在线诊断技术[J]. 电机与控制应用, 2022, 49(2): 104-108. |
LIU F, CUI J, LIN H. An online diagnosis technology of aero generator rotating rectifier fault[J]. Electric Machines & Control Application, 2022, 49(2): 104-108 (in Chinese). | |
99 | SUN C H, LIU W G, ZHU Y J, et al. High Frequency Voltage Injection based Fault Detection of Rotating Rectifier for Three-stage Synchronous Starter/Generator in the Stationary State[C]∥ 2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Piscataway: IEEE Press, 2019: 1024-1028. |
100 | SUN C H, LIU W G, HAN X, et al. High-frequency voltage injection-based fault detection of a rotating rectifier for a wound-rotor synchronous starter/generator in the stationary state[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13423-13433. |
101 | ZHANG C, XIA L. A novel online diagnosis of brushless generator rotary rectifier fault[C]∥ 2008 International Conference on Electrical Machines and Systems. Piscataway: IEEE Press, 2008: 835-838. |
102 | LI X Y, LIU W G, JIAO N F, et al. Fault diagnosis of rotating rectifier in aircraft wound-rotor synchronous starter-generator based on stator currents under all operational processes[J]. IEEE Transactions on Power Electronics, 2023, 38(12): 16072-16084. |
103 | MAHTANI K, GUERRERO J M, BEITES L F, et al. Application of a model-based method to the online detection of rotating rectifier faults in brushless synchronous machines[J]. Machines, 2023, 11(2): 223. |
104 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
105 | 朱佩荣, 刘勇智, 刘棕成, 等. 基于CEEMD与改进的ELM旋转整流器故障诊断[J]. 北京航空航天大学学报, 2023, 49(5): 1166-1175. |
ZHU P R, LIU Y Z, LIU Z C, et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1166-1175 (in Chinese). | |
106 | 张敬, 李颖晖, 朱喜华, 等. 基于改进的D-S证据理论的旋转整流器故障诊断研究[J]. 大电机技术, 2012(1): 59-64. |
ZHANG J, LI Y H, ZHU X H, et al. Research on fault diagnosis of rotating rectifie based on improved D-S rule[J]. Large Electric Machine and Hydraulic Turbine, 2012(1): 59-64 (in Chinese). | |
107 | CUI J, SHI G, ZHANG Z R. Fault detection of aircraft generator rotating rectifier based on SAE and SVDD method[C]∥ 2017 Prognostics and System Health Management Conference (PHM-Harbin). Piscataway: IEEE Press, 2017: 1-5. |
108 | CUI J, TANG J X, SHI G, et al. Generator rotating rectifier fault detection method based on stacked auto-encoder[C]∥ 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). Piscataway: IEEE Press, 2017: 256-261. |
109 | 崔江, 唐军祥, 龚春英, 等. 一种基于改进堆栈自动编码器的航空发电机旋转整流器故障特征提取方法[J]. 中国电机工程学报, 2017, 37(19): 5696-5706. |
CUI J, TANG J X, GONG C Y, et al. A fault feature extraction method of aerospace generator rotating rectifier based on improved stacked auto-encoder[J]. Proceedings of the CSEE, 2017, 37(19): 5696-5706 (in Chinese). | |
110 | JORDAN S, APSLEY J. Open-circuit fault analysis of diode rectified multiphase synchronous generators for DC aircraft power systems[C]∥ 2013 International Electric Machines & Drives Conference. Piscataway: IEEE Press, 2013: 926-932. |
111 | FENG S, CUI J, ZHANG Z R. Fault diagnosis method for an aerospace generator rotating rectifier based on dynamic FFT technology[J]. Metrology and Measurement Systems, 2021, 28(2): 269-288. |
112 | MOHAMMAD-ALIKHANI A, VAHEDI A, RAHNAMA M, et al. A wrapper-based feature selection approach for accurate fault detection of rotating diode rectifiers in brushless synchronous generators[J]. IOP Conference Series: Materials Science and Engineering, 2020, 671(1): 012045. |
113 | RAHNAMA M, VAHEDI A, MOHAMMAD-ALIKHANI A, et al. Diagnosis of brushless synchronous generator using numerical modeling[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(5): 1241-1254. |
114 | 陈东华, 张凤雏. 基于小波变换的同步交流发电机旋转整流器故障诊断[J]. 机械制造与自动化, 2018, 47(6): 224-227. |
CHEN D H, ZHANG F C. Fault diagnosis of rotating rectifier of synchronous AC generator based on wavelet transform[J]. Machine Building & Automation, 2018, 47(6): 224-227 (in Chinese). | |
115 | RAHNAMA M, VAHEDI A, ALIKHANI A M, et al. Diode open-circuit fault detection in rectifier bridge of the brushless synchronous generator[C]∥ 2018 XIII International Conference on Electrical Machines (ICEM). Piscataway: IEEE Press, 2018: 1821-1826. |
116 | CHE C C, WANG H W, FU Q, et al. Combining multiple deep learning algorithms for prognostic and health management of aircraft[J]. Aerospace Science and Technology, 2019, 94: 105423. |
117 | TORSTEN H, DAN A, TAL B N, et al. Sparsity in Deep Learning: pruning and growth for efficient inference and training in neural networks[J]. Journal of machine learning research, 2021, 22(241): 1-124. |
118 | LI W H, HUANG R Y, LI J P, et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges[J]. Mechanical Systems and Signal Processing, 2022, 167: 108487. |
119 | QIAN C H, ZHU J J, SHEN Y H, et al. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge[J]. Neural Processing Letters, 2022, 54(3): 2509-2531. |
120 | HU T H, TANG T, CHEN M. Data simulation by resampling—a practical data augmentation algorithm for periodical signal analysis-based fault diagnosis[J]. IEEE Access, 2019, 7: 125133-125145. |
121 | YUAN Y G, WEI J N, HUANG H S, et al. Review of resampling techniques for the treatment of imbalanced industrial data classification in equipment condition monitoring[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106911. |
122 | THUEREY N, HOLL P, MUELLER M, et al. Physics-based deep learning[DB/OL]. arXiv preprint: 2109.05237,2021. |
123 | H?GER C, PFISTER H D. Physics-based deep learning for fiber-optic communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 280-294. |
124 | ARIAS C M, KULKARNI C, GOEBEL K, et al. Fusing physics-based and deep learning models for prognostics[J]. Reliability Engineering & System Safety, 2022, 217: 107961. |
125 | SINGH M, FUENMAYOR E, HINCHY E, et al. Digital twin: origin to future[J]. Applied System Innovation, 2021, 4(2): 36. |
126 | CHEN H Y, ZHANG Z B, KARAMANAKOS P, et al. Digital twin techniques for power electronics-based energy conversion systems: a survey of concepts, application scenarios, future challenges, and trends[J]. IEEE Industrial Electronics Magazine, 2023, 17(2): 20-36. |
127 | TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011(1): 154798. |
128 | DONG Y T, JIANG H K, WU Z H, et al. Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis[J]. Reliability Engineering & System Safety, 2023, 235: 109253. |
129 | 黄文恺, 梁智洪, 王明华,等. 数字孪生在航空航天结构设计、制造和运维中的应用与展望[J]. 图学学报, 2024, 45(2): 241-249. |
HUANG W K, LIANG Z H, WANG M H, et al. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249 (in Chinese). | |
130 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 1-12. |
MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 1-12 (in Chinese). | |
131 | AYDEMIR H, ZENGIN U, DURAK U. The digital twin paradigm for aircraft review and outlook[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
132 | YIN Z H, WANG L. Application and development prospect of digital twin technology in aerospace[J]. IFAC-PapersOnLine, 2020, 53(5): 732-737. |
133 | LI L N, ASLAM S, WILEMAN A, et al. Digital twin in aerospace industry: a gentle introduction[J]. IEEE Access, 2022, 10: 9543-9562. |
134 | XIONG M L, WANG H W. Digital twin applications in aviation industry: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9): 5677-5692. |
/
〈 |
|
〉 |