Material Engineering and Mechanical Manufacturing

Broadband wave absorber with filled step-structured design using FDM technology

  • Yongsheng YE ,
  • Qinfeng LIU ,
  • Ruipeng JIA ,
  • Di DING ,
  • Weidong JIAO ,
  • Xicong YE ,
  • Haihua WU ,
  • Enyi HE
Expand
  • 1.College of Machinery and Power Engineering,China Three Gorges University,Yichang  443002,China
    2.Graphite Additive Manufacturing Technology and Equipment Hubei Engineering Research Center,China Three Gorges University,Yichang  443002,China
    3.Confederation of Chinese Metalforming Industry,Beijing 102206,China
    4.Jiangsu Branch of China Academy of Machinery Science and Technology Group Co. ,Ltd,Changzhou  213164,China
E-mail: heenyi@ctgu.edu.cn

Received date: 2024-04-03

  Revised date: 2024-05-06

  Accepted date: 2024-06-17

  Online published: 2024-07-01

Supported by

2022 Industrial Technology Foundation Public Service Platform(2022-232-223);Hubei Provincial Key Laboratory of Hydropower Machinery and Equipment Design and Maintenance Open Fund(2022KJX 05)

Abstract

Broadband absorption poses a significant challenge in the development of wave absorbers for practical applications. We utilized Fused Deposition Modeling (FDM) technology to fabricate the absorber shell, by employing homemade Graphene (rGO)-Fe3O4/Ethyl Cellulose Ethoce (EC) composite microspheres as the absorber material. We investigated the influence of geometric parameters of the unit structure and the inter-layer distribution of materials on the absorption performance, and analyzed the variation characteristics of equivalent impedance matching through normalization. Our findings demonstrate that the absorber exhibits broadband absorption, polarization-independent characteristics, and large-angle absorption properties. Physical testing of the absorber reveals a 99% effective absorption (reflection loss less than -10 dB) bandwidth (2.1 GHz to 18.0 GHz) within the 2 GHz to 18 GHz range, with peak reflective loss intensities of -21.9 dB and -24.1 dB, respectively. These results closely align with CST simulations, demonstrating effective absorption and peak intensities of -20.6 dB and -20.1 dB over the entire 2 GHz to 18 GHz range. For Transverse Electric Wave (TE) polarization, the absorber maintains a 15 GHz effective absorption bandwidth at an incident angle of 40°, and effective absorption in the X and Ku bands at 50°. The absorber's performance is attributed to well-regulated equivalent impedance matching, while the gradient parameters within its structure significantly increase the number of electromagnetic wave reflections, thereby fully utilizing the diffraction capabilities of electromagnetic waves.

Cite this article

Yongsheng YE , Qinfeng LIU , Ruipeng JIA , Di DING , Weidong JIAO , Xicong YE , Haihua WU , Enyi HE . Broadband wave absorber with filled step-structured design using FDM technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 430486 -430486 . DOI: 10.7527/S1000-6893.2024.30486

References

1 SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials202232(5): 2107508.
2 DUAN Y B, LIANG Q X, YANG Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology[J]. Materials & Design2021208: 109900.
3 WANG H, XIU X, WANG Y, et al. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs[J]. Composites Part B: Engineering2020202: 108378.
4 NING J, DONG S F, LUO X Y, et al. Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances[J]. Results in Physics202018: 103320.
5 LIU T, XU Y G, ZHENG D L, et al. Fabrication and absorbing property of the tower-like absorber based on 3D printing process[J]. Physica B: Condensed Matter2019553: 88-95.
6 YOUNES H, LI R, LEE S E, et al. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multi-walled carbon nanotubes for electromagnetic wave absorption[J]. Synthetic Metals2021275: 116731.
7 SON W L, ZHOU Z L, WANG L C,et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells[J].ACS Applied Materials & Interfaces20179(49): 43179-43187.
8 XIONG H, HONG J S, LUO C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics2013114(6): 64109.
9 HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials2022128: 112173.
10 XING R Z, XU G X, QU N, et al. 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption[J]. Advanced Functional Materials202434(31): 2307499.
11 YE X C, YANG C, HE E Y, et al. Optimization design of 3D-printed pyramid structure for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds2023963: 171258.
12 叶永盛, 丁迪, 吴海华, 等. 石墨烯增强Fe3O4/Ec复合微球吸波性能[J]. 航空学报202344(11): 427549.
  YE Y S, DING D, WU H H, et al. Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica202344(11): 427549 (in Chinese).
13 SHEN Y, ZHANG J Q, PANG Y Q, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction[J]. Scientific Reports20188: 4423.
14 ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon2019141: 608-617.
15 DENG G S, CHEN W Q, YU Z C, et al. 3D-printed dielectric-resonator-based ultra-broadband microwave absorber using water substrate[J]. Journal of Electronic Materials202251(5): 2221-2227.
16 ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology2023146: 10-18.
17 YANG R G. Electromagnetic properties and microwave absorption properties of BaTiO3-carbonyl iron composite in S and C bands[J]. Journal of Magnetism and Magnetic Materials2011323(13): 1805-1810.
18 ZHOU Y F, SHEN Z Y, HUANG X J, et al. Ultra-wideband water-based metamaterial absorber with temperature insensitivity[J]. Physics Letters A2019383(23): 2739-2743.
19 LI W, WU T L, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics2014116(4): 044110.
20 YANG Z, LIANG Q X, DUAN Y B, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property[J]. Composite Structures2021274: 114330.
21 CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics & Laser Technology2020124: 105972.
22 王凤琳, 张娜, 包建军, 等. 基于图案化和超表面结构制备高效宽频吸波材料[J]. 高分子材料科学与工程202238(1): 131-136.
  WANG F L, ZHANG N, BAO J J, et al. Preparation of efficient broadband absorbing materials based on patterning and metamaterial surface[J]. Polymer Materials Science and Engineering38(1): 131-136 (in Chinese).
23 ZHOU Q, SHI T T, XUE B, et al. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial[J]. Composites Science and Technology2023232: 109877.
24 HAN M Y, ZHOU M, WU Y, et al. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption[J]. Journal of Alloys and Compounds2022902: 163792.
25 REN J, YIN J Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer[J]. Materials201811(7): 1249.
26 SUN H D, ZHANG Y, WU Y, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure[J]. ACS Applied Materials & Interfaces202214(46): 52182-52192.
27 SUN H D, ZHANG Y, WU Y, et al. Broadband absorption of macro pyramid structure based flame retardant absorbers[J]. Journal of Materials Science & Technology2022128: 228-238.
Outlines

/