1 |
SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials, 2022, 32(5): 2107508.
|
2 |
DUAN Y B, LIANG Q X, YANG Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology[J]. Materials & Design, 2021, 208: 109900.
|
3 |
WANG H, XIU X, WANG Y, et al. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs[J]. Composites Part B: Engineering, 2020, 202: 108378.
|
4 |
NING J, DONG S F, LUO X Y, et al. Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances[J]. Results in Physics, 2020, 18: 103320.
|
5 |
LIU T, XU Y G, ZHENG D L, et al. Fabrication and absorbing property of the tower-like absorber based on 3D printing process[J]. Physica B: Condensed Matter, 2019, 553: 88-95.
|
6 |
YOUNES H, LI R, LEE S E, et al. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multi-walled carbon nanotubes for electromagnetic wave absorption[J]. Synthetic Metals, 2021, 275: 116731.
|
7 |
SON W L, ZHOU Z L, WANG L C,et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells[J].ACS Applied Materials & Interfaces, 2017, 9(49): 43179-43187.
|
8 |
XIONG H, HONG J S, LUO C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics, 2013, 114(6): 64109.
|
9 |
HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173.
|
10 |
XING R Z, XU G X, QU N, et al. 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption[J]. Advanced Functional Materials, 2024, 34(31): 2307499.
|
11 |
YE X C, YANG C, HE E Y, et al. Optimization design of 3D-printed pyramid structure for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2023, 963: 171258.
|
12 |
叶永盛, 丁迪, 吴海华, 等. 石墨烯增强Fe3O4/Ec复合微球吸波性能[J]. 航空学报, 2023, 44(11): 427549.
|
|
YE Y S, DING D, WU H H, et al. Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 427549 (in Chinese).
|
13 |
SHEN Y, ZHANG J Q, PANG Y Q, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction[J]. Scientific Reports, 2018, 8: 4423.
|
14 |
ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon, 2019, 141: 608-617.
|
15 |
DENG G S, CHEN W Q, YU Z C, et al. 3D-printed dielectric-resonator-based ultra-broadband microwave absorber using water substrate[J]. Journal of Electronic Materials, 2022, 51(5): 2221-2227.
|
16 |
ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology, 2023, 146: 10-18.
|
17 |
YANG R G. Electromagnetic properties and microwave absorption properties of BaTiO3-carbonyl iron composite in S and C bands[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(13): 1805-1810.
|
18 |
ZHOU Y F, SHEN Z Y, HUANG X J, et al. Ultra-wideband water-based metamaterial absorber with temperature insensitivity[J]. Physics Letters A, 2019, 383(23): 2739-2743.
|
19 |
LI W, WU T L, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics, 2014, 116(4): 044110.
|
20 |
YANG Z, LIANG Q X, DUAN Y B, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property[J]. Composite Structures, 2021, 274: 114330.
|
21 |
CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics & Laser Technology, 2020, 124: 105972.
|
22 |
王凤琳, 张娜, 包建军, 等. 基于图案化和超表面结构制备高效宽频吸波材料[J]. 高分子材料科学与工程, 2022,38(1): 131-136.
|
|
WANG F L, ZHANG N, BAO J J, et al. Preparation of efficient broadband absorbing materials based on patterning and metamaterial surface[J]. Polymer Materials Science and Engineering, 38(1): 131-136 (in Chinese).
|
23 |
ZHOU Q, SHI T T, XUE B, et al. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial[J]. Composites Science and Technology, 2023, 232: 109877.
|
24 |
HAN M Y, ZHOU M, WU Y, et al. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption[J]. Journal of Alloys and Compounds, 2022, 902: 163792.
|
25 |
REN J, YIN J Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer[J]. Materials, 2018, 11(7): 1249.
|
26 |
SUN H D, ZHANG Y, WU Y, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 52182-52192.
|
27 |
SUN H D, ZHANG Y, WU Y, et al. Broadband absorption of macro pyramid structure based flame retardant absorbers[J]. Journal of Materials Science & Technology, 2022, 128: 228-238.
|