ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Safety interval evaluation for multi-aircraft eVTOL in urban low altitude
Received date: 2024-04-25
Revised date: 2024-06-04
Accepted date: 2024-06-18
Online published: 2024-06-20
Supported by
National Natural Science Foundation of China(62173332);Tianjin Diversified Fund Project(21JCYBJCO0700┫?);?University-Level Graduate Student Innovation and Entrepreneurship Project(2023YJSKC03007);Tianjin Education Commission Natural Science Key Project(2020ZD01)
In the future, urban low altitude may face a large number of demands for operation of electric Vertical Take-Off and Landing (eVTOL), which will result in potential problems of low airspace utilization, high collision risk, etc. To ensure the safety and efficiency of aircraft operation, it is necessary to establish appropriate safety interval standards. To study the safety interval of multi-model eVTOL in urban low altitude, a classical Event longitudinal, lateral and vertical collision model is established for composite-wing eVTOL, and an improved Event model based on the frustum of the cone collision box is established for multi-rotor eVTOL. The eVTOLs are classified into three categories of light, medium and heavy types according to their payload and number of passengers. The mainstream models are selected for statistical analysis, and the collision box sizes of the models are calculated. Considering the positioning error, the longitudinal, lateral and vertical overlap probability of the aforementioned parameters is calculated using the concept of Required Navigation Performance (RNP). A simulation environment is established to calculate the parameter of relative velocity, taking into account the distribution of heading angle, pitch angle limitation, and velocity error distribution. Finally, the lateral, longitudinal and vertical safety intervals of different types of eVTOLs are calculated according to the established collision model. The target level of safety of light, medium and heavy eVTOL are set to 10-7, 10-8 and 10-9 times/flight hour, respectively. The minimum intervals between different types of eVTOL are finally derived. These intervals are determined to be 82, 83, 93, 102 m, respectively, for light multi-rotor, light composite wings, medium composite wings, and heavy composite wings. The results of the study can provide a reference for the development of eVTOL interval standards.
Xinglong WANG , Youjie WANG . Safety interval evaluation for multi-aircraft eVTOL in urban low altitude[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 330604 -330604 . DOI: 10.7527/S1000-6893.2024.30604
1 | THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations: AIAA-2018-3676[R]. Reston: AIAA, 2018. |
2 | HILL B, DECARME D. Urban air mobility (UAM) vision concept of operations (ConOps) UAM maturity level (UML)-4[C]?∥ UAM UML-4 Vision ConOps Workshops. Washington, D.C.: NASA, 2021. |
3 | Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 1.0[R]. Washington, D.C.: NASA, 2020. |
4 | Federal Aviation Administration. Urban air mobility (UAM) concept of operations: Version 2.0[R]. Washington, D.C.: NASA, 2023. |
5 | 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. |
LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54 (in Chinese). | |
6 | 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. |
ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024638 (in Chinese). | |
7 | HUSSAIN A, Rutgers V. Change is in the air: The elevated future of mobility: What’s next on the horizon [R/OL]. (2019-06-03)[2024-04-25]. . |
8 | Morgan Stanley Research. Flying cars: Investment implications of autonomous urban air mobility[R]. New York: Morgan Stanley, 2018. |
9 | 中国民用航空局. 亿航EH216-S型无人驾驶航空器系统专用条件: [S]. 2022-02-22. |
Civil Aviation Administration of China. EH216-S unmanned aerial vehicle system special conditions: [S]. 2022-02-22 (in Chinese). | |
10 | 中国民航网.亿航智能EH216-S获中国民航局颁发生产许可证[EB/OL]. (2024-04-07)[2024-04-25]. . |
Civil Aviation Administration of China. EH intelligent EH216-S receives production licence from Civil Aviation Administration of China (CAAC) [EB/OL]. (2024-04-07)[2024-04-09]. (in Chinese). | |
11 | 廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 028521. |
LIAO X H, QU W Q, XU C C, et al. A review of urban air mobility and its new infrastructure low-altitude public routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 028521 (in Chinese). | |
12 | REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. The Journal of Navigation, 1997, 50(3): 436-447. |
13 | BROOKER P. Lateral collision risk in air traffic track systems: A ‘Post-Reich’ event model[J]. The Journal of Navigation, 2003, 56(3): 399-409. |
14 | BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. |
15 | 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 30(6): 1411-1418. |
XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 30(6): 1411-1418 (in Chinese). | |
16 | 徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报, 2008, 26(3): 1-4. |
XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on Event[J]. Journal of Civil Aviation University of China, 2008, 26(3): 1-4 (in Chinese). | |
17 | 戴福青, 周启. 基于Event的垂直碰撞风险改进模型研究[J]. 中国民航大学学报, 2011, 29(6): 4-7. |
DAI F Q, ZHOU Q. Study on improved vertical collision risk model based on Event[J]. Journal of Civil Aviation University of China, 2011, 29(6): 4-7 (in Chinese). | |
18 | 黄晋, 焦瑶瑶, 刘厚荣, 等. 基于改进Event模型的交叉航路碰撞风险分析[J]. 航空计算技术, 2023, 53(1): 11-15. |
HUANG J, JIAO Y Y, LIU H R, et al. Cross route collision risk analysis based on improved Event model[J]. Aeronautical Computing Technique, 2023, 53(1): 11-15 (in Chinese). | |
19 | 王莉莉, 鲁胜男. 平行进近偏航下Event碰撞风险模型[J]. 中国安全科学学报, 2019, 29(11): 8-13. |
WANG L L, LU S N. Collision risk of parallel approach in yaw based on Event model[J]. China Safety Science Journal, 2019, 29(11): 8-13 (in Chinese). | |
20 | 张兆宁, 时瑞军. 自由飞行下改进的Event碰撞风险计算模型[J]. 中国安全科学学报, 2015, 25(7): 35-40. |
ZHANG Z N, SHI R J. Study on free flight collision risk based on improved Event model[J]. China Safety Science Journal, 2015, 25(7): 35-40 (in Chinese). | |
21 | ZHANG Z Y, ZHANG J, WANG P, et al. Research on operation of UAVs in non-isolated airspace[J]. Computers, Materials & Continua, 2018, 57(1): 151-166. |
22 | 邓力. 无人机与民航客机碰撞概率研究[J]. 南京理工大学学报(自然科学版), 2019, 43(1): 122-128. |
DENG L. Research of collision probability of unmanned aerial vehicles and civil airplane[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 122-128 (in Chinese). | |
23 | 韩鹏, 周斌, 张恩宇. 终端区多场景有人机/无人机空中碰撞风险研究[J]. 西华大学学报(自然科学版), 2022, 41(2): 8-11. |
HAN P, ZHOU B, ZHANG E Y. Air collision risk of manned drones in multiple scenarios in the terminal area[J]. Journal of Xihua University (Natural Science Edition), 2022, 41(2): 8-11 (in Chinese). | |
24 | ZHANG Z G, LU X H, ZHANG Y C, et al. Research on collision risk between light unmanned arial vehicles and aircraft windshield[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(5): 534-546. |
25 | 甄然, 赵正, 康兢, 等. 基于EVENT改进模型的碰撞风险研究[J]. 河北工业科技, 2021, 38(1): 7-11. |
ZHEN R, ZHAO Z, KANG J, et al. Research on collision risk based on improved EVENT model[J]. Hebei Journal of Industrial Science and Technology, 2021, 38(1): 7-11 (in Chinese). | |
26 | 张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术, 2023, 45(10): 3149-3156. |
ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics, 2023,45(10): 3149-3156 (in Chinese). | |
27 | ZHONG G, DU S, ZHANG H H, et al. Demarcation method of safety separations for sUAV based on collision risk estimation[J]. Reliability Engineering & System Safety, 2024, 242: 109738. |
28 | ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619. |
29 | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
30 | 孟祥伟, 张平. 低空非管制空域航空器碰撞风险研究[C]∥ 2010年航空器适航与空中交通管理学术年会. 2010: 127-134. |
MENG X W, ZHANG P. Research on aircraft mid-air collision risk in low-altitude uncontrolled airspace[C]?∥ 2010 Annual Conference on Airworthiness and Air Traffic Management. 2010: 127-134 (in Chinese). | |
31 | 王莉莉, 阳杰. 基于速度随机分布的低空空域小型无人机碰撞风险评估模型[J]. 交通信息与安全, 2022, 40(4):64-70. |
WANG L L, YANG J. A collision risk model for small UAVs based on velocity random distribution in low-altitude airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70 (in Chinese). | |
32 | EASA. Means of compliance with the special condition VTOL[EB/OL].(2021-05-12)[2024-04-25]. . |
33 | 中国民用航空局航空器适航审定司. 民用无人驾驶航空器系统适航审定分级分类和系统安全性分析指南: AC-21-AA-2022-40 [S]. 2022-12-21. |
Department of Aircraft Airworthiness Certification, Civil Aviation Administration of China. Civil unmanned aerial vehicle system airworthiness certification classification and system safety analysis guide: AC-21-AA-2022-40 [S]. 2022-12-21 (in Chinese). |
/
〈 |
|
〉 |