ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Maneuver load analysis and alleviation technology of flexible aircraft: Review
Received date: 2024-02-02
Revised date: 2024-03-18
Accepted date: 2024-06-04
Online published: 2024-06-20
Supported by
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);Aeronautical Science Foundation of China(2022Z012051001)
Flight loads are the foundation of aircraft structural design. However, it is a challenge to accurately and rapidly obtain maneuver loads in aircraft development. The elastic correction is performed based on rigid maneuver flight loads in early aircraft design. With the continuous increase in the flight speed and structural flexibility of modern aircraft, structural elastic deformation leads to significant changes in the distribution of maneuver loads, and it requires a comprehensive consideration of the coupling between aerodynamics and structure. Several analysis methods of maneuver loads are rapidly developed to satisfy different accuracy and efficiency. The load alleviation technology helps reduce the weight while satisfying the same requirements of the maneuver characteristics, stiffness and strength, becoming a hot topic in this field. This paper first summarizes the overall requirements and technical framework for the analysis and alleviation of maneuver flight loads in modern flexible aircraft. Then the analysis methods of flight loads, involving aerodynamics, structural strength/stiffness, data mapping, flight mechanics, etc., are introduced. The domestic and foreign technologies of maneuver load alleviation and simulation and experimental cases of maneuver flight loads analysis and alleviation are reviewed. Finally, the key issues of future maneuver flight loads analysis and alleviation technology development are discussed to provide reference for researchers in this field.
Key words: flight loads; maneuver loads; aeroelasticity; load alleviation; wind tunnel test; flight test
Zhiqiang WAN , Shanshan ZHANG , Xiaozhe WANG , Liang MA , Ao XU , Zhigang WU , Chao YANG . Maneuver load analysis and alleviation technology of flexible aircraft: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 30279 -030279 . DOI: 10.7527/S1000-6893.2024.30279
1 | 杨超, 邱祈生, 周宜涛, 等. 飞机阵风响应减缓技术综述 [J]. 航空学报, 2022, 43(10): 527350. |
YANG C, QIU Q S, ZHOU Y T, et al. Review of aircraft gust alleviation technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527350 (in Chinese). | |
2 | 闫中午, 宗宁, 任文广, 等. 飞行载荷发展综述[J]. 航空工程进展, 2020, 11(6): 873-886. |
YAN Z W, ZONG N, REN W G, et al. Development overview of flight loads[J]. Advances in Aeronautical Science and Engineering, 2020, 11(6): 873-886 (in Chinese). | |
3 | 唐皓. 弹性飞机载荷减缓技术研究[D]. 南京: 南京航空航天大学, 2013: 16-39. |
TANG H. Research on load mitigation technology of elastic aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 16-39 (in Chinese). | |
4 | 吕聪. 民用飞机大展弦比柔性机翼气动弹性建模与主动控制[D]. 上海: 上海交通大学, 2017: 32-49. |
LYU C. Aeroelastic modeling and active control of flexible wings with high aspect ratio for civil aircraft[D]. Shanghai: Shanghai Jiao Tong University, 2017: 32-49 (in Chinese). | |
5 | 杨云, 王育平. 大型民用飞机的载荷减缓控制方案分析[J]. 自动化与仪器仪表, 2017(11): 52-55, 58. |
YANG Y, WANG Y P. Analysis of load reduction control scheme for large civil aircraft[J]. Automation & Instrumentation, 2017(11): 52-55, 58 (in Chinese). | |
6 | HANDOJO V, HIMISCH J, BRAMSIEPE K, et al. Potential estimation of load alleviation and future technologies in reducing aircraft structural mass[J]. Aerospace, 2022, 9(8): 412. |
7 | WANG X R, MKHOYAN T, DE BREUKER R. Nonlinear incremental control for flexible aircraft trajectory tracking and load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(1): 39-57. |
8 | 杨超, 吴志刚. 飞行器气动弹性原理[M]. 3版. 北京: 北京航空航天大学出版社, 2024: 1-164. |
YANG C, WU Z G. Aeroelastic principle of aircraft[M]. 3rd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2024: 1-164 (in Chinese). | |
9 | 中国人民解放军总装备部. 军用飞机结构强度规范 第2部分:飞行载荷: [S]. 北京: 中国人民解放军总装备部, 2008. |
General Armaments Department of the People’s Liberation Army. Military airplane structural strength specification Part 2: Flight loads: [S]. Beijing: General Armaments Department of the People’s Liberation Army, 2008 (in Chinese). | |
10 | 严德. 弹性飞机机动飞行与阵风载荷分析及优化研究[D]. 北京: 北京航空航天大学, 2008: 18. |
YAN D. Analysis and optimization of maneuvering flight[D]. Beijing: Beihang University, 2008: 18 (in Chinese). | |
11 | SADOFF M, CLOUSING L. Measurements of the pressure distribution on the horizontal-tail surface of a typical propeller-driven pursuit airplane in flight III: Tail loads in abrupt pull-up push-down maneuvers: NACA-TN-1539 [R]. Washington, D.C.: NACA, 1948. |
12 | 孙建华, 蘧时红. 飞机结构部件飞行载荷估算方法研究[J]. 航空学报, 1994, 15(1): 106-108. |
SUN J H, QU S H. A study on flight load estimation ofaircraft structural components[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1): 106-108 (in Chinese). | |
13 | 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模. 航空学报, 2020, 41(8): 123664. |
CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664 (in Chinese). | |
14 | 邓立东, 李天. 柔性飞机的非线性飞行载荷计算研究[J]. 飞行力学, 2004 (4): 85-88. |
DENG L D, LI T. Research of nonlinear flight loads calculation on a flexible aircraft[J]. Flight Dynamics, 2004 (4): 85-88 (in Chinese). | |
15 | LOVE M. Identification of critical flight loads[C]∥ Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003 |
16 | 秦航远. 机动载荷减缓理论与试验研究[D]. 北京: 北京航空航天大学, 2017: 12-22,59-77. |
QIN H Y. Theoretic and experimental studies on maneuver loads alleviation[D]. Beijing: Beihang University, 2017: 12-22,59-77 (in Chinese). | |
17 | 解思适. 飞机设计手册 第9册载荷、张度和刚度[M]. 北京: 航空工业出版社, 2001: 1-45. |
XIE S S. Aircraft design manual: part 9-load strength & stiffness[M]. Beijing: Aviation Industry Press, 2001: 1-45 (in Chinese). | |
18 | 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京: 航空工业出版社, 2021: 1-168. |
WAN Z Q, YANG C. Flight load analysis and aeroelastic optimization of aircraft[M]. Beijing: Aviation Industry Press, 2021: 1-168 (in Chinese). | |
19 | 尹会伟. 机动载荷减缓主动控制与风洞试验研究[D]. 北京: 北京航空航天大学, 2014: 1-11. |
YIN H W. Maneuver load alleviation using active control and wind tunnel test[D]. Beijing: Beihang University, 2014: 1-11 (in Chinese). | |
20 | 朱阳贞. 柔性飞机机动载荷分析与控制[D]. 北京: 北京航空航天大学, 2010: 1-18. |
ZHU Y Z. Maneuver loads analysis and control for flexible aircraft[D]. Beijing: Beihang University, 2010: 1-18 (in Chinese). | |
21 | 刘斌, 王和平, 王建培. 小型无人机尾翼对称机动飞行载荷计算[J]. 飞行力学, 2003(3): 52-55. |
LIU B, WANG H P, WANG J P. Flight maneuver loads calculation of the small UAV’s tail[J]. Flight Dynamics, 2003(3): 52-55 (in Chinese). | |
22 | BROWN H H. Flight investigation of some factors affecting the critical tail loads on large airplanes: NACA-TN-2490 [R]. Washington, D.C.: NACA, 1951. |
23 | PEARSON H, MCGOWAN W, DONEGAN J. Horizontal tail loads in maneuvering flight: NACA-TR-1007 [R]. Washington, D.C.: NACA, 1950. |
24 | TAYLOR J, ENGINEER A. Manual on aircraft loads[M]. Oxford: Advisory Group for Aeronautical Research and Development, NATO, 1965: 1-84. |
25 | 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础[M]. 2版. 北京: 北京航空航天大学出版社, 2010: 1-38. |
CHEN G B, YANG C, ZOU C Q. Basics of aeroelastic design [M]. 2nd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010: 1-38 (in Chinese). | |
26 | MSC.Software Corporation. MSC flightloads and dynamics user’s guide[M]. Los Angeles, CA: MSC.Software Corporation, 2021: 317-330. |
27 | ZINK P S, MAVRIS D N, RAVEH D E. Maneuver trim optimization techniques for active aeroelastic wings[J]. Journal of Aircraft, 2001, 38(6): 1139-1146. |
28 | 程刚. 国军标规范飞机气动载荷计算软件研制及其应用[J]. 航空学报, 1994, 15(1): 46-49. |
CHENG G. Development and application of airplane airload calculation software in accordance with national miitary specification [J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1): 46-49 (in Chinese). | |
29 | 李昭广. 非对称动力机动飞行的载荷研究[J]. 航空学报, 1994, 15(1): 41-45. |
LI Z G. A study on flight loads for unsymmetrical power maneuver[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1): 41-45 (in Chinese). | |
30 | 孙本华. 军用飞机飞行载荷计算方法研究[J]. 空气动力学学报, 2006, 24(2): 238-242. |
SUN B H. Calculation method of flight load for military aircraft[J]. Acta Aerodynamica Sinica, 2006, 24(2): 238-242 (in Chinese). | |
31 | 王仲燕. 飞机操纵系统特性对机动载荷的影响[J]. 航空学报, 1994, 15(1): 27-31. |
WANG Z Y. The influence of airplane control system properties on the maneuver loads[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1): 27-31 (in Chinese). | |
32 | RAVEH D, KARPEL M. Structural optimization of flight vehicles with non-linear aerodynamic loads[C]∥ Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998. |
33 | 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 2018, 36(6): 1009-1018. |
YANG C, YANG L, XIE C C. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. Acta Aerodynamica Sinica, 2018, 36(6): 1009-1018 (in Chinese). | |
34 | BERTIN J J, CUMMINGS R M. Aerodynamics for engineers[M]. Cambridge: Cambridge University Press, 2021. |
35 | XIE C C, CHEN Z Y, AN C. Aeroelastic response of a Z-shaped folding wing during the morphing process[J]. AIAA Journal, 2022, 60(5): 3166-3179. |
36 | Zona Technology Inc. ZONAIR user’s manual[M]. Scottsdale, AZ: ZONA Technology Inc, 2017: 585-673. |
37 | 孙岩, Andrea Da Ronch, 王运涛, 等. 基于非线性涡格法的快速静气动弹性数值模拟技术[J]. 气体物理, 2020, 5(6): 26-38. |
SUN Y, ANDREA D R, WANG Y T, et al. Fast static aeroelasticity simulation approach based on nonlinear vortex lattice method[J]. Physics of Gases, 2020, 5(6): 26-38 (in Chinese). | |
38 | 杨澜, 安朝, 谢长川, 等. 基于状态空间涡格法的阵风减缓分析[J]. 北京航空航天大学学报, 2022, 48(7): 1200-1209. |
YANG L, AN C, XIE C C, et al. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209 (in Chinese). | |
39 | 郑维新, 刘海颖. 基于改进涡格法的飞翼飞行器动力学建模方法[J]. 舰船电子工程, 2023, 43(9): 100-103, 115. |
ZHENG W X, LIU H Y. Dynamics modeling method of flying wing vehicle based on improved vortex lattice method[J]. Ship Electronic Engineering, 2023, 43(9): 100-103, 115 (in Chinese). | |
40 | 高传强, 张伟伟. 跨声速气动弹性力学[M]. 北京: 科学出版社, 2022: 72-90. |
GAO C Q, ZHANG W W. Transonic aeroelasticity [M]. Beijing: Science Press, 2022: 72-90 (in Chinese). | |
41 | 张佳龙, 姚宏, 姜久龙. 先进战机大迎角机动仿真研究[J]. 飞行力学, 2016, 34(1): 10-13. |
ZHANG J L, YAO H, JIANG J L. Research on the simulation of advanced fighter maneuvers at high AOA[J]. Flight Dynamics, 2016, 34(1): 10-13 (in Chinese). | |
42 | 孙海生, 姜裕标, 黄勇, 等. 现代战斗机非定常空气动力学及其风洞实验研究[J]. 空气动力学学报 2008, 26(z1): 59-65. |
SUN H, JIANG Y, HUANG Y, et al. Unsteady aerodynamics of modern fighter plane and experiment research in W. T.[J]. Acta Aerodynamica Sinica, 2008, 26(z1): 59-65 (in Chinese). | |
43 | GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. |
44 | WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]∥Proceedings of the 23rd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1998. |
45 | BAGHERI A K, JONES D P, GAITONDE A L. Linear reduced-order model of airfoil gust response[J]. Journal of Aircraft, 2019, 56(3): 1264-1271. |
46 | KARCHER N, WALLRAFF M. Accelerating CFD solver computation time with reduced-order modeling in a multigrid environment[J]. International Journal for Numerical Methods in Fluids, 2021, 93(2): 462-480. |
47 | GOVINDAN K, BIER N. Modelling aileron and spoiler deflections with the linear frequency domain method (LFD) for subsonic flight conditions[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(4): 1-19. |
48 | SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103. |
49 | YETKIN S, ABUHANIEH S, YIGIT S. Investigation on the abilities of different artificial intelligence methods to predict the aerodynamic coefficients[J]. Expert Systems with Applications, 2024, 237: 121324. |
50 | WAN Z Q, WANG X Z, YANG C. Integrated aerodynamics/structure/stability optimization of large aircraft in conceptual design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(4): 745-756. |
51 | 杨佑绪, 吴志刚, 杨超. 基于等效板模型的弹翼颤振分析[J]. 航空学报, 2011, 32(5): 833-840. |
YANG Y X, WU Z G, YANG C. Flutter analysis of missile wing using equivalent plate model[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 833-840 (in Chinese). | |
52 | 王晓喆. 大型客机贯穿各设计阶段的气动/结构综合优化[D]. 北京: 北京航空航天大学, 2019: 81-87. |
WANG X Z. Integrated aerodynamics/structure optimization throughout design process of a civil airplane[D]. Beijing: Beihang University, 2019: 81-87 (in Chinese). | |
53 | JENSEN P S. Finite difference techniques for variable grids[J]. Computers & Structures, 1972, 2(1-2): 17-29. |
54 | PERRONE N, KAO R. A general finite difference method for arbitrary meshes[J]. Computers & Structures, 1975, 5(1): 45-57. |
55 | LISZKA T, ORKISZ J. Finite difference method at arbitrary irregular meshes in non-linear problems of applied mechanics[C]∥International Association for Structural Mechanics in Reactor Technology. 1977: 83-85. |
56 | BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256. |
57 | BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods: An overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 3-47. |
58 | SINGH I V. A numerical solution of composite heat transfer problems using meshless method[J]. International Journal of Heat and Mass Transfer, 2004, 47(10-11): 2123-2138. |
59 | 张小华. 无网格方法在计算流体力学中的应用研究[D]. 西安: 西北工业大学, 2006: 25-49. |
ZHANG X H. Application of meshless method in computational fluid dynamics [D]. Xi’an: Northwestern Polytechnical University, 2006: 25-49 (in Chinese). | |
60 | 张建平. 活塞组耦合传热分析的三维无网格法计算模型与应用研究[D]. 武汉: 华中科技大学, 2013: 35-101. |
ZHANG J P. Research on three dimensional meshless method calculation model and application for coupling heat transfer analysis of piston packs[D]. Wuhan: Huazhong University of Science and Technology, 2013: 35-101 (in Chinese). | |
61 | WANG X Z, ZHANG S S, WAN Z Q, et al. Aeroelastic topology optimization of wing structure based on moving boundary meshfree method[J]. Symmetry, 2022, 14(6): 1154. |
62 | LIU Y Z, WAN Z Q, YANG C, et al. NURBS-enhanced meshfree method with an integration subtraction technique for complex topology[J]. Applied Sciences, 2020, 10(7): 2587. |
63 | HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191. |
64 | 李琳瑶. 基于三维气动力的静气弹高精度插值方法研究[D]. 北京: 北京航空航天大学, 2020: 17-25. |
LI L Y. Research on high-precision interpolation method of static aeroelasticity based on 3d aerodynamic force[D]. Beijing: Beihang University, 2020: 17-25 (in Chinese). | |
65 | 刘艳, 白俊强, 华俊, 等. 复杂构型高精度静气动弹性分析方法及其应用研究[J]. 西北工业大学学报, 2015, 33(1): 14-20. |
LIU Y, BAI J Q, HUA J, et al. A high-fidelity static aeroelastic analysis method for complex configuration and its application[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 14-20 (in Chinese). | |
66 | CHENG Y H, SUN Q. Displacements transfer in static aeroelastic analysis using least-squares fitting method[C]∥2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). Piscataway: IEEE Press, 2020: 722-727. |
67 | 李豪, 张晓蓉, 孙岩, 等. 气动弹性耦合界面插值点自动选取算法[J/OL]. 北京航空航天大学学报, (2024-01-15) [2024-05-16]. . |
LI H, ZHANG X, SUN Y, et al. Automatic selection algorithm of interpolation points on aeroelastic coupling interface[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2024-01-15)[2024-05-16]. (in Chinese). | |
68 | WAN Z Q, LIANG L, YANG C. Method of the jig shape design for a flexible wing[J]. Journal of Aircraft, 2014, 51(1): 327-330. |
69 | 刘耘臻, 万志强, 杨超. 飞行载荷外部气动力的二次规划等效映射方法[J]. 北京航空航天大学学报, 2020, 46(3): 541-547. |
LIU Y Z, WAN Z Q, YANG C. Quadratic programming equivalent mapping method for external aerodynamic force in flight load analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 541-547 (in Chinese). | |
70 | 万志强, 邓立东, 杨超, 等. 基于非线性试验气动力的飞机静气动弹性响应分析[J]. 航空学报, 2005, 26(4): 439-445. |
WAN Z Q, DENG L D, YANG C, et al. Aircraft static aeroelastic response analysis based on nonlinear experimental aerodynamic data[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 439-445 (in Chinese). | |
71 | 韦昌, 樊昱晨, 周永清, 等. 基于龙格库塔法的多输出物理信息神经网络模型[J]. 力学学报, 2023, 55(10): 2405-2416. |
WEI C, FAN Y C, ZHOU Y Q, et al. Multi-output physics-informed neural networks model based on the Runge-Kutta method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2405-2416 (in Chinese). | |
72 | 熊俊, 郑威, 李洪淼, 等. 中型无人机飞行包线研究[J]. 航空科学技术, 2023, 34(7): 57-62. |
XIONG J, ZHENG W, LI H M, et al. Flight envelope research on medium-sized UAV[J]. Aeronautical Science & Technology, 2023, 34(7): 57-62 (in Chinese). | |
73 | 吴宗成, 朱自强, 丁宁, 等. 三维副翼铰链力矩计算[J]. 航空学报, 2007, 28(3): 519-526. |
WU Z C, ZHU Z Q, DING N, et al. Calculation of hinge moment of 3-D aileron[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 519-526 (in Chinese). | |
74 | 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27. |
HU H Y, ZHAO Y H, HUANG R. Studies on aeroelastic analysis and control of aircraft structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27 (in Chinese). | |
75 | 肖志鹏, 万志强, 杨超. 三翼面飞机前翼和平尾机动载荷优化配置[J]. 航空学报, 2009, 30(2): 276-282. |
XIAO Z P, WAN Z Q, YANG C. Maneuver load optimal distribution between canard and horizontal tail of three-surface aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 276-282 (in Chinese). | |
76 | 刘伏虎, 马晓平. 弹性飞机阵风减缓气动伺服弹性系统鲁棒性研究[J]. 飞行力学, 2015, 33(6): 514-518. |
LIU F H, MA X P. Research on robustness for gust alleviation aeroservoelastic system of elastic aircraft[J]. Flight Dynamics, 2015, 33(6): 514-518 (in Chinese). | |
77 | 李道春, 向锦武. 非线性气动弹性模型参考自适应控制[J]. 航空学报, 2008, 29(2): 280-284. |
LI D C, XIANG J W. Model reference adaptive control of nonlinear aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 280-284 (in Chinese). | |
78 | 刘璟龙. 多操纵面飞机阵风缓和方法研究[D]. 西安: 西北工业大学, 2019: 37-137. |
LIU J L. Research on gust load alleviation methods for multi-control-effectors aircraft [D]. Xi’an: Northwestern Polytechnical University, 2019: 37-137 (in Chinese). | |
79 | 秦先学. 基于前馈控制的民用飞机阵风载荷减缓技术研究[D]. 天津: 中国民航大学, 2020: 8-25. |
QIN X X. Research on gust load alleviation technology of civil aircraft based on feedforward control[D]. Tianjin: Civil Aviation University of China, 2020: 8-25 (in Chinese). | |
80 | 张育鸣, 戴玉婷, 黄广靖, 等. 柔性变形后缘的翼型阵风减缓及气动噪声分析[J]. 航空学报, 2024, 45(10):129219. |
ZHANG Y M, DAI Y T, HUANG G J, et al. Gust alleviation and aeroacoustic characteristics analysis of the flexible morphing trailing edge airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129219. | |
81 | 于金革, 由亮, 张颖, 等. 大型低速风洞全模阵风试验支撑装置研制与验证[J]. 机械科学与技术, 2024, 43(8):1462-1468. |
YU J G, YOU L, ZHANG Y, et al. Development and verification of full model gust test suspension device for large low speed wind tunnel[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(8):1462-1468 (in Chinese). | |
82 | TAYLOR P, HANSON L, BARNES T. A brief history of aircraft loads analysis methods[C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
83 | KUBBAT W, SENSBURG O. Recent developments in active control technology<149>for fighter aircraft design[C]?∥Atlantic Aeronautical Conference. Reston: AIAA, 1979. |
84 | RAVEH D E, LEVY Y, KARPEL M. Structural optimization using computational aerodynamics[J]. AIAA Journal, 2000, 38(10): 1974-1982. |
85 | ZINK P S, RAVEH D E, MAVRIS D N. Integrated trim and structural design process for active aeroelastic wing technology[J]. Journal of Aircraft, 2003, 40(3): 523-531. |
86 | MEIROVITCH L, TUZCU I. Time simulations of the response of maneuvering flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 814-828. |
87 | DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2): 81-86. |
88 | FORSTER E, KOLONAY R, VENKAYYA V, et al. Optimization of a generic fighter wing incorporating active aeroelastic wing technology[C]∥Proceedings of the 6th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1996. |
89 | WHITE R J. Improving the airplane efficiency by use of wing maneuver load alleviation[J]. Journal of Aircraft, 1971, 8(10): 769-775. |
90 | ANDERSON D, BERGER R, HESS J JR. Maneuver load control and relaxed static stability applied to a contemporary fighter aircraft[C]∥Guidance and Control Conference. Reston: AIAA, 1972. |
91 | PERRY B, COLE S R, MILLER G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15. |
92 | MILLER G D. Active flexible wing (AFW) technology: TR-87-3096 [R]. Los Angeles: Airforce Wright Aeronautical Laboratory, 1988: 140-206. |
93 | WOODS-VEDELER J A, POTOTZKY A S, HOADLEY S T. Rolling maneuver load alleviation using active controls[J]. Journal of Aircraft, 1995, 32(1): 68-76. |
94 | ANDERSEN G, FORSTER E, KOLONAY R, et al. A study of control surface blending for active aeroelastic wing technology[C]∥37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996. |
95 | ALLEN M, LIZOTTE A, DIBLEY R, et al. Loads model development and analysis for the F/A-18 active aeroelastic wing airplane[C]?∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. |
96 | RAVEH D E. Maneuver load analysis of overdetermined trim systems[J]. Journal of Aircraft, 2008, 45(1): 119-129. |
97 | 吴文海, 高阳, 汪节. 飞行控制系统的发展历程、现状与趋势[J]. 飞行力学, 2018, 36(4): 1-5,10. |
WU W H, GAO Y, WANG J. Development course, status and trend of flight control system[J]. Flight Dynamics, 2018, 36(4): 1-5,10 (in Chinese). | |
98 | YANG D Q, GUO S J. Rolling active control for an aircraft of seamless aeroelastic wing[C]?∥50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2197. |
99 | SCOTT M, ENKE A, FLANAGAN J. SensorCraft free-flying aeroservoelastic model: Design and fabrication[C]∥Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
100 | SCOTT R, COULSON D, CASTELLUCCIO M, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]?∥ Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
101 | LIN J G. Reducing induced drag and maneuver loads by active aeroelastic alteration[J]. Journal of Aircraft, 2016, 53(6): 1787-1801. |
102 | 严德, 杨超. 基于试验气动力的纵向机动飞行载荷分析[J]. 北京航空航天大学学报, 2007, 33(3): 253-256. |
YAN D, YANG C. Flight loads analysis of longitudinal maneuver using experimental aerodynamic forces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3): 253-256 (in Chinese). | |
103 | 朱阳贞, 吴志刚, 杨超. 弹性飞机纵向机动响应与载荷控制[J]. 飞机工程, 2010(4): 40-44. |
ZHU Y Z, WU Z G, YANG C. Longitudinal maneuver response and loads control of aeroelastic airplanes[J]. Aircraft Engineering, 2010(4): 40-44 (in Chinese). | |
104 | 曹奇凯. 战斗机机动过程与飞行载荷综合设计[J]. 北京航空航天大学学报, 2011, 37(9): 1105-1109. |
CAO Q K. Synthetic design on maneuver processes and flight loads of fighters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1105-1109 (in Chinese). | |
105 | 唐皓, 赵永辉, 黄锐. 刚弹耦合飞行器的机动载荷减缓[J]. 航空计算技术, 2012, 42(3): 33-37. |
TANG H, ZHAO Y H, HUANG R. Maneuver loads alleviation for an aircraft considering rigid-elastic coupling effects[J]. Aeronautical Computing Technique, 2012, 42(3): 33-37 (in Chinese). | |
106 | LIU Y S, HONG S, ZIO E, et al. Integrated fault estimation and fault-tolerant control for a flexible regional aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(3): 390-399. |
107 | YANG Y, YANG C, WU Z G. Aeroelastic dynamic response of elastic aircraft with consideration of two-dimensional discrete gust excitation[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1228-1241. |
108 | ZHAO D Q, YANG Z C, ZENG X N, et al. Wind tunnel test of gust load alleviation for a large-scale full aircraft model[J]. Chinese Journal of Aeronautics, 2023, 36(4): 201-216. |
109 | ZHOU Y T, WU Z G, YANG C. Intelligent feedforward gust alleviation based on neural network[J]. Chinese Journal of Aeronautics, 2024, 37(3): 116-132. |
110 | YIN H W, WU Z G, YANG C. Design and analysis of a wind tunnel test model system for rolling maneuver load alleviation of flying wings[C]∥Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. |
111 | 秦航远, 吴志刚, 杨超, 等. 滚转机动载荷减缓风洞试验[J]. 北京航空航天大学学报, 2016, 42(9): 2008-2016. |
QIN H Y, WU Z G, YANG C, et al. Wind tunnel test of rolling maneuver load alleviation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 2008-2016 (in Chinese). | |
112 | 曾宪昂, 蒲利东, 李俊杰, 等. 基于超静定配平的机动载荷控制风洞试验[J]. 航空学报, 2017, 38(5): 120596. |
ZENG X A, PU L D, LI J J, et al. Wind-tunnel test of maneuver load control based overdetermined trim[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120596 (in Chinese). | |
113 | 雷朝辉, 杨超, 宋晨, 等. 连续变弯度后缘飞机的滚转机动载荷减缓研究[J]. 北京航空航天大学学报, 2024, 50(10): 3172-3182. |
LEI C H, YANG C, SONG C, et al. Rolling maneuver load alleviation of aircraft with morphing trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(10): 3172-3182 (in Chinese). | |
114 | KOPF M, BULLINGER E, GIESSELER H G, et al. Model predictive control for aircraft load alleviation: Opportunities and challenges[C]∥2018 Annual American Control Conference (ACC). Piscataway: IEEE Press, 2018: 2417-2424. |
115 | VO? A, OHME P. Dynamic maneuver loads calculations for a sailplane and comparison with flight test[J]. CEAS Aeronautical Journal, 2018, 9(3): 445-460. |
116 | RAAB C, ROHDE-BRANDENBURGER K. In-flight testing of MEMS pressure sensors for flight loads determination[C]?∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
117 | WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1649-1662. |
118 | LI H K, ZHAO Y H, HU H Y. Adaptive maneuver load alleviation via recurrent neural networks[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(7): 1824-1831. |
119 | LI H K, HUANG R, ZHAO Y H, et al. Maneuver load alleviation for high performance aircraft robust to flight condition variations[J]. Journal of Vibration and Control, 2019, 25(5): 1044-1057. |
120 | 李鸿坤. 飞机体自由度颤振及机动载荷的主动控制研究[D]. 南京: 南京航空航天大学, 2018: 44-68. |
LI H K. Active controls for airplanes to suppress body freedom flutter and to alleviate maneuver load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 44-68 (in Chinese). | |
121 | 方振平. 带自动器飞机飞行动力学[M]. 北京: 国防工业出版社, 1999: 277-295. |
FANG Z P. Aircraft flight dynamics and automatic flight control[M]. Beijing: National Defense Industry Press, 1999: 277-295 (in Chinese). | |
122 | 陈磊. 弹性飞机阵风减缓控制与风洞试验方法研究[D]. 北京: 北京航空航天大学, 2011: 20-40. |
CHEN L. Control and wind tunnel experiment method research of elastic aircraft for gust alleviation[D]. Beijing: Beihang University, 2011: 20-40 (in Chinese). | |
123 | Zona Technology Inc. ZAERO theoretical manual version 9.3[M]. Scottsdale, AZ: ZONA Technology Inc, 2017: 207-232. |
124 | 郑晓辉, 郭腾飞, 余圣晖. 基于A320飞机横航向控制律架构的LQ设计[J]. 民用飞机设计与研究, 2014(4): 15-17,82. |
ZHENG X, GUO T, YU S. Linear quadratic design based on a320 lateral and directional control law architecture[J]. Civil Aircraft Design & Research, 2014(4): 15-17,82 (in Chinese). | |
125 | GANGSAAS D, LY U Y. Appilication of a modified linear quadratic Gaussian design to active control of a transport airplane[C]∥Proceedings of the Guidance and Control Conference. Reston: AIAA, 1979. |
126 | AOUF N, BOULET B, BOTEZ R. Robust gust load alleviation for a flexible aircraft[J]. Canadian Aeronautics Space Journal, 2000, 46(3): 131-139. |
127 | 张亮, 李丹钰, 崔乃刚, 等. 垂直起降可重复使用运载火箭全剖面飞行预设性能控制[J]. 航空学报, 2023, 44(23): 628103. |
ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628103 (in Chinese). | |
128 | 党小为, 唐鹏, 孙洪强, 等. 基于角加速度估计的非线性增量动态逆控制及试飞[J]. 航空学报, 2020, 41(4): 323534. |
TANG X W, TANG P, SUN H Q, et al. Incremental nonlinear dynamic inversion control and flight test based on angular acceleration estimation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323534 (in Chinese). | |
129 | ZENG J, KUKREJA S L, MOULIN B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1377-1390. |
130 | HAGHIGHAT S, LIU H H T, MARTINS J R R A. Model-predictive gust load alleviation controller for a highly flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1751-1766. |
131 | LIU X, SUN Q, COOPER J E. LQG based model predictive control for gust load alleviation[J]. Aerospace Science and Technology, 2017, 71: 499-509. |
132 | FERRIER Y, NGUYEN N T, TING E, et al. Active gust load alleviation of high-aspect ratio flexible wing aircraft[C]∥2018 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018. |
133 | GILI P, RUOTOLO R, GILI P, et al. A neural gust alleviator for a non-linear combat aircraft model[C]∥Proceedings of the Guidance, Navigation, and Control Conference. Reston: AIAA, 1997. |
134 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
135 | 李海泉, 陈小前, 左林玄, 等. 基于随机森林的飞行载荷代理模型分析方法[J]. 航空学报, 2022, 43(3): 225640. |
LI H Q, CHEN X Q, ZUO L X, et al. Surrogate model for flight load analysis based on random forest[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 225640 (in Chinese). | |
136 | LI H Q, ZHANG Q H, CHEN X Q. Deep learning-based surrogate model for flight load analysis[J]. Computer Modeling in Engineering & Sciences, 2021, 128(2): 605-621. |
137 | GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep learning: Adaptive computation and machine learning series[M]. Cambridge, MA: The MIT Press, 2016. |
138 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778. |
139 | 彭玉酌, 唐朕, 肖启之. 飞行载荷神经网络代理模型研究[J]. 航空工程进展, 2023, 14(1): 90-97. |
PENG Y Z, TANG Z, XIAO Q Z. Research on flight load surrogate model using neural networks[J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 90-97 (in Chinese). | |
140 | WADA D C, TAMAYAMA M. Wing load and angle of attack identification by integrating optical fiber sensing and neural network approach in wind tunnel test[J]. Applied Sciences, 2019, 9(7): 1461. |
141 | 金鑫, 殷建业, 王健志. 基于深度学习的飞行载荷测试与反演方法研究[J]. 航空工程进展, 2020, 11(6): 887-893. |
JIN X, YIN J Y, WANG J Z. Research on deep-learning-based flight load test and estimation method[J]. Advances in Aeronautical Science and Engineering, 2020, 11(6): 887-893 (in Chinese). | |
142 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
143 | YAN X H, ZHU J H, KUANG M C, et al. Aerodynamic shape optimization using a novel optimizer based on machine learning techniques[J]. Aerospace Science and Technology, 2019, 86: 826-835. |
144 | 刘超. 基于降阶模型的复合材料翼面气动弹性优化设计[D]. 北京: 北京航空航天大学, 2013: 48-51. |
LIU C. Aeroelastic optimization design of composite wing based on reduced-order model[D]. Beijing: Beihang University, 2013: 48-51 (in Chinese). | |
145 | KRIGE D. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. |
146 | SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-423, 415. |
147 | 聂雪媛, 刘中玉, 杨国伟. 基于Kriging代理模型的飞行器结构刚度气动优化设计[J]. 气体物理, 2017, 2(2): 8-16. |
NIE X Y, LIU Z Y, YANG G W. Aircraft structure stiffness and aerodynamics optimization design based on Kriging surrogate model[J]. Physics of Gases, 2017, 2(2): 8-16 (in Chinese). | |
148 | 李凯, 杨静媛, 高传强, 等. 基于POD和代理模型的静气动弹性分析方法[J]. 力学学报, 2023, 55(2): 299-308. |
LI K, YANG J Y, GAO C Q, et al. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308 (in Chinese). | |
149 | DARWICH A. Gust and manoeuvre loads alleviation using lower surface spoiler[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
/
〈 |
|
〉 |