Reviews

Research progress on structural design methods and mechanical properties of lightweight high⁃strength composite lattice stiffened shell structure

  • Wenyu WANG ,
  • Feng LI ,
  • Feixiang REN ,
  • Xingyu WEI ,
  • Jian XIONG
Expand
  • 1.Center for Composite Materials and Structures,School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
    2.National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,Harbin Institute of Technology,Harbin 150080,China
    3.Chengdu Aircraft Design and Research Institute,Aviation Industry Corporation of China,Chengdu 610041,China
E-mail: jx@hit.edu.cn

Received date: 2023-12-20

  Revised date: 2024-02-02

  Accepted date: 2024-03-20

  Online published: 2024-03-29

Supported by

National Natural Science Foundation of China(12072091)

Abstract

Lightweight high-strength composite lattice stiffenedshell structureis widely used in aerospace due to its unique advantages of high specific strength, high specific stiffness and strong design ability. The preparation process involves various techniques such as fiber winding, molding, and locking, ensuring precision and stability in the structures. This paper outlines the preparation techniques and mechanical performance characterization methods, encompassing static failure modes, ultimate loads, and dynamic modal shape analysis. Furthermore, it provides a comprehensive review of the latest research advancements in the multi-functionalization of composite materials in the aerospace field,and offers insights into the future development trends, to provide valuable references for research and applications in related domains.

Cite this article

Wenyu WANG , Feng LI , Feixiang REN , Xingyu WEI , Jian XIONG . Research progress on structural design methods and mechanical properties of lightweight high⁃strength composite lattice stiffened shell structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 530001 -530001 . DOI: 10.7527/S1000-6893.2024.30001

References

1 袁立群, 单杭英, 杨忠清, 等. 复合材料在无人机上的应用与展望[J]. 玻璃纤维2017(6): 30-36.
  YUAN L Q, SHAN H Y, YANG Z Q, et al. The application and prospect of composite materials in UAV[J]. Fiber Glass2017(6): 30-36 (in Chinese).
2 王宇. 先进复合材料在无人机中的应用进展[J]. 现代工业经济和信息化202111(11): 150-151.
  WANG Y. Progress of advanced composite materials in unmanned aerial vehicles[J]. Modern Industrial Economy and Informationization202111(11): 150-151 (in Chinese).
3 段国晨, 赵景丽, 赵伟超. 先进复合材料在无人机结构的应用[J]. 纤维复合材料202239(2): 105-114.
  DUAN G C, ZHAO J L, ZHAO W C. Application of advanced composite materials in UAV at home and abroad[J]. Fiber Composites202239(2): 105-114 (in Chinese).
4 王尔泰. 高速无人机复合材料机翼结构设计与优化研究[D]. 厦门: 厦门大学, 2020: 1-8.
  WANG E T. The research on structural design and optimization for composite wings of high-speed UAV[D]. Xiamen: Xiamen University, 2020: 1-8 (in Chinese).
5 闫照为. 太阳能无人机大展弦比机翼结构设计与优化[D]. 沈阳: 沈阳航空航天大学, 2021: 1-9.
  YAN Z W. Structure design and optimization of a solar UAV wine with high aspect ratio[D]. Shenyang: Shenyang Aerospace University, 2021: 1-9 (in Chinese).
6 沈浩杰, 陈刚, 夏杨. 某型无人机复合材料机翼结构尺寸优化设计[J]. 复合材料科学与工程2021(12): 82-88.
  SHEN H J, CHEN G, XIA Y. Size optimization design of composite wing for UAV[J]. Composites Science and Engineering2021(12): 82-88 (in Chinese).
7 陈刚, 王校培, 宋军, 等. 某高载荷大后掠无人机复合材料机翼结构设计与试验验证[J]. 南京航空航天大学学报202153(4): 613-619.
  CHEN G, WANG X P, SONG J, et al. Structural design and test verification of composite wing for high load and large sweepback UAVs[J]. Journal of Nanjing University of Aeronautics & Astronautics202153(4): 613-619 (in Chinese).
8 艾森, 常亮, 罗利龙, 等. 具有工程适用性的复合材料机翼结构快速设计[J]. 工程与试验202161(3): 24-26, 74.
  AI S, CHANG L, LUO L L, et al. Rapid design of composite wing structure with engineering applicability[J]. Engineering & Test202161(3): 24-26, 74 (in Chinese).
9 伍星亮, 周金宇, 丁力. 无人机机翼的结构/材料一体化优化设计[J]. 机械设计与制造2022(3): 214-218.
  WU X L, ZHOU J Y, DING L. Structure/material integrated optimization design of UAV wing[J]. Machinery Design & Manufacture2022(3): 214-218 (in Chinese).
10 樊新乾, 武晓英, 麻丽明, 等. 碳纤维复合薄壁材料的无人机机翼结构优化设计[J]. 塑料科技202250(9): 109-113.
  FAN X Q, WU X Y, MA L M, et al. Optimization design of structure of unmanned aerial vehicle wing with carbon fiber composite thin wall material[J]. Plastics Science and Technology202250(9): 109-113 (in Chinese).
11 黄成磊. 复合材料太阳能无人机翼梁与翼肋结构优化[D]. 西安: 西安工业大学, 2022: 1-10.
  HUANG C L. Spar and rib structure optimization of composite solar UAV[D]. Xi’an: Xi’an Technological University, 2022: 1-10 (in Chinese).
12 关鑫, 王洪雨, 徐挺,等. 某型无人机碳纤维复合材料尾撑杆研制[J]. 复合材料科学与工程2020(11): 61-65.
  GUAN X, WANG H Y, XU T, et al. The research and development of composite tail boom for an unmanned aerial vehicle (UAV)[J]. Composites Science and Engineering2020(11): 61-65 (in Chinese).
13 王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术202063(18): 84-90, 101.
  WANG C Y, YANG X T, XU X B, et al. Structural energy storage carbon fiber composite design and application in drone[J]. Aeronautical Manufacturing Technology202063(18): 84-90, 101 (in Chinese).
14 彭波, 王帅培. 复合材料无人机弓形起落架有限元仿真与优化[J]. 机械研究与应用202033(3): 52-55.
  PENG B, WANG S P. Design and optimization of composite UAV arched landing gear[J]. Mechanical Research & Application202033(3): 52-55 (in Chinese).
15 孟鑫沛, 张燕琴, 蔡舒莹, 等. 无人机复合材料起落架优化设计[J]. 装备制造技术2022(8): 110-114.
  MENG X P, ZHANG Y Q, CAI S Y, et al. Optimal design of composite landing gear for UAV[J]. Equipment Manufacturing Technology2022(8): 110-114 (in Chinese).
16 吴瑕, 姚菊明, 王琰, 等. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报202243(8): 80-87.
  WU X, YAO J M, WANG Y, et al. Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade[J]. Journal of Textile Research202243(8): 80-87 (in Chinese).
17 刘峰, 闫清云, 王卓煜. 全复合材料太阳能无人机结构设计与分析[J]. 复合材料科学与工程2022(4): 32-39.
  LIU F, YAN Q Y, WANG Z Y. Structural design and analysis of composite solar powered unmanned aerial vehicle[J]. Composites Science and Engineering2022(4): 32-39 (in Chinese).
18 闫清云. 四十公斤级复合材料太阳能无人机结构设计与分析[D]. 广汉: 中国民用航空飞行学院, 2022: 1-5.
  YAN Q Y. Structural design and analysis of 40kg composite solar unmanned aerial vehicle[D]. Guanghan: Civil Aviation Flight University of China, 2022: 1-5 (in Chinese).
19 张旭东, 赵伟超, 张娟. 小型无人机复合材料圆管的成型工艺[J]. 宇航材料工艺202151(3): 82-85.
  ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite tube for small unmanned aerial vehicle[J]. Aerospace Materials & Technology202151(3): 82-85 (in Chinese).
20 孙昕, 周德旭, 甘子东, 等. 无人机结构用复合材料及其制造技术研究[J]. 产业创新研究2021(16): 90-92.
  SUN X, ZHOU D X, GAN Z D, et al. Research on composite materials for UAV structure and its manufacturing technology[J]. Industrial Innovation2021(16): 90-92 (in Chinese).
21 刘向, 徐维, 梁瑶, 等. 碳纤维复合材料一体化成型及其在无人机领域的应用[J]. 化纤与纺织技术202150(7): 97-98.
  LIU X, XU W, LIANG Y, et al. Integrated molding of carbon fiber composite and its application in UAV field[J]. Chemical Fiber & Textile Technology202150(7): 97-98 (in Chinese).
22 张旭东, 赵伟超, 张娟. 中型无人机复合材料机翼梁的成型工艺[J]. 宇航材料工艺202252(1): 94-97.
  ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite wing beam for medium unmanned aerial vehicle[J]. Aerospace Materials & Technology202252(1): 94-97 (in Chinese).
23 VASILIEV V V, BARYNIN V A, RAZIN A F. Anisogrid composite lattice structures—Development and aerospace applications[J]. Composite Structures201294(3): 1117-1127.
24 CHEN L M, FAN H L, SUN F F, et al. Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder[J]. Thin-Walled Structures201368: 75-84.
25 SAKATA K, BEN G. Development of fast fabrication method for cylindrical-shaped grids and mechanical properties of CFRP pressure vessel reinforced with cylindrical-shaped grids[J]. Advanced Composite Materials201625(S1): 1-16.
26 OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques[J]. Composite Structures2019224: 110987.
27 KULKARNI P, MALI K D, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A2020137: 106013.
28 ZHANG P, HAN Z Y, GU J C, et al. A strategy of parallel winding of circumferential ribs and helical ribs for composite cylindrical grid structures[J]. Composite Structures2021275: 114351.
29 ZHAO C, DONOUGH M J, PRUSTY B G, et al. Influences of ply waviness and discontinuity on automated fibre placement manufactured grid stiffeners[J]. Composite Structures2021256: 113106.
30 SHI H G, FAN H L, SHAO G J. Equivalent continuum method for anisogrid composite lattice conical shells with equiangular, equidistant and geodesic spiral ribs[J]. Composite Structures2021275: 114472.
31 GAO Y, SONG X W, DING H M, et al. Influence of fiber cutting at the composite grid intersection on the compressive performance of laminate[J]. Composite Structures2021267: 113859.
32 TOTARO G, SPENA P, GIUSTO G, et al. Highly efficient CFRP anisogrid lattice structures for central tubes of medium-class satellites: Design, manufacturing, and performance[J]. Composite Structures2021258: 113368.
33 GIUSTO G, TOTARO G, SPENA P, et al. Composite grid structure technology for space applications[J]. Materials Today: Proceedings202134: 332-340.
34 HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures2022284: 115120.
35 MOROZOV E V, LOPATIN A V, KHAKHLENKOVA A A. Finite-element modelling, analysis and design of anisogrid composite lattice spoke of an umbrella-type deployable reflector of space antenna[J]. Composite Structures2022286: 115323.
36 DE NICOLA F, TOTARO G, GIUSTO G, et al. An efficient and scalable manufacturing method for CFRP lattice structures for satellite central tube and large deployable antenna boom applications[J]. CEAS Space Journal202315(1): 183-202.
37 YANG J S, XIONG J, MA L, et al. Modal response of all-composite corrugated sandwich cylindrical shells[J]. Composites Science and Technology2015115: 9-20.
38 LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing201681: 313-322.
39 LI M, SUN F F, LAI C L, et al. Fabrication and testing of composite hierarchical isogrid stiffened cylinder[J]. Composites Science and Technology2018157: 152-159.
40 熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-29.
  XIONG J. Design and mechanical behavior of lightweight composite innovative lattice truss structures[D]. Harbin: Harbin Institute of Technology, 2013: 1-29 (in Chinese).
41 殷莎. 基于Ashby设计思想的新型点阵结构: 制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-17.
  YIN S. Novel lattice structures based on Ashby’s designing criteria: Fabrication and mechanical properties characterization[D]. Harbin: Harbin Institute of Technology, 2013: 1-17 (in Chinese).
42 JIANG S, SUN F F, FAN H L, et al. Fabrication and testing of composite orthogrid sandwich cylinder[J]. Composites Science and Technology2017142: 171-179.
43 YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures2018201: 131-140.
44 WAGNER H N R, SOSA E M, LUDWIG T, et al. Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure[J]. International Journal of Mechanical Sciences2019156: 205-220.
45 WANG B, DU K, HAO P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors[J]. International Journal of Solids and Structures2019164: 37-51.
46 ZHAO C, NIU J L, ZHANG Q Z, et al. Buckling behavior of a thin-walled cylinder shell with the cutout imperfections[J]. Mechanics of Advanced Materials and Structures201926(18): 1536-1542.
47 BAI X, TANG R K, ZAN Y F, et al. Stability analysis of a cylindrical shell with axially symmetric defects under axial compression based on the reduction stiffness method[J]. Ocean Engineering2019193: 106584.
48 SHATOV A V, BUROV A E, LOPATIN A V. Buckling of composite sandwich cylindrical shell with lattice anisogrid core under hydrostatic pressure[J]. Journal of Physics: Conference Series20201546: 012139.
49 RAOUF N, DAVAR A, POURTAKDOUST S H. Reliability analysis of composite anisogrid lattice interstage structure[J]. Mechanics Based Design of Structures and Machines202050(9): 3322-3330.
50 WAGNER H N R, HüHNE C, NIEMANN S. Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors[J]. Thin-Walled Structures2020155: 106931.
51 WAGNER H N R, HüHNE C, ELISHAKOFF I. Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression[J]. Thin-Walled Structures2020146: 106451.
52 WAGNER H, HüHNE C, JANSSEN M. Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors?[J]. Thin-Walled Structures2020151: 106764.
53 SMEETS B J R, FAGAN E M, MATTHEWS K, et al. Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications[J]. Composites Part B: Engineering2021212: 108691.
54 HYEOK J M, TAEK K S, GUL K I, et al. Failure load prediction of anisogrid cylindrical composite lattice structures using failure criterion based on ratio of bending to compressive stress[J]. Journal of Mechanical Science and Technology202135(11): 4897-4906.
55 KIM Y, PARK J. A theoretical model for the buckling characteristics of a laminated composite cylindrical shell with circular cutouts[J]. Advanced Composite Materials202231(5): 515-537.
56 FADAVIAN A, FADAVIAN H, DAVAR A, et al. A comparative experimental and numerical study on buckling behavior of composite lattice cylinders[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering202246(4): 1175-1193.
57 PARAMASIVAM S, JOHNSONA J T. Experimental and numerical studies on the low-velocity impact response of carbon fiber-reinforced polymer anisogrid cylindrical shells[J]. Polymer Composites202243(6): 3831-3845.
58 LI M, ZHU H Y, LAI C L, et al. Recent progresses in lightweight carbon fibre reinforced lattice cylindrical shells[J]. Progress in Aerospace Sciences2022135: 100860.
59 ZAREI M, RAHIMI G H. Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure[J]. Thin-Walled Structures2022174: 109027.
60 LI Z B, GAO Y, XUE P C, et al. Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression[J]. Composites Part A: Applied Science and Manufacturing2022161: 107075.
61 DEEPAK S, HIREMATH S S. Design of Euplectella aspergillum based bionic thin tubes for impact absorbing application under different loading conditions[J]. Journal of Materials Research and Technology202323: 3790-3810.
62 BAO W Y, LI M, AN X Y, et al. Hierarchical-level failure analysis for CFRC lattice stiffened panel[J]. Thin-Walled Structures2023183: 110354.
63 WANG Y L, LI H M, TANG Z J, et al. Mechanical performances of composite orthogrid stiffened cylinder manufactured by an improved method[J]. Composite Structures2023316: 117044.
64 ZHANG L, LI M, LAI C L, et al. Unified buckling computational framework of hydro-statically-loaded stiffened composite cylindrical shells[J]. International Journal of Mechanical Sciences2023256: 108514.
65 LI Z B, WANG W Y, XUE P C, et al. Mechanical properties and failure mechanisms of all-CFRP corrugated sandwich truncated cone[J]. Composites Part B: Engineering2024268: 111090.
66 XIONG J, GHOSH R, MA L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures2014116: 793-804.
67 XIONG J, FENG L N, GHOSH R, et al. Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores[J]. Composite Structures2016156: 307-319.
68 MAES V K, PAVLOV L, SIMONIAN S M S. An efficient semi-automated optimisation approach for (grid-stiffened) composite structures: Application to Ariane 6 interstage[J]. Composite Structures2019209: 1042-1049.
69 KIM Y, KIM I, PARK J. An approximate formulation for the progressive failure analysis of a composite lattice cylindrical panel in aerospace applications[J]. Aerospace Science and Technology2020106: 106212.
70 LI Q W, SUN B H. Optimization of a lattice structure inspired by glass sponge[J]. Bioinspiration & Biomimetics202218(1): 016005.
71 LI Z B, GAO Y, WANG Y, et al. Failure mechanisms and acoustic emission pattern recognition of all-CFRP cylindrical honeycomb sandwich shell under three-point bending[J]. Composites Science and Technology2023237: 110003.
72 YANG J S, XIONG J, MA L, et al. Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores[J]. Composite Structures2014117: 362-372.
73 YANG J S, MA L, CHAVES-VARGASM, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science and Technology2017147: 89-99.
74 YANG J S, MA L, SCHR?DER K U, et al. Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels[J]. Polymer Testing201868: 8-18.
75 LOPATIN A V, MOROZOV E V, SHATOV A V. Buckling and vibration of composite lattice elliptical cylindrical shells[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications2019233(7): 1255-1266.
76 KHAKHLENKOVA A A, MOSKVICHEV E V, LOPATIN A V. Finite element modeling of a multifaceted composite lattice anisogrid payload adapter for launching several spacecrafts[J]. Journal of Physics: Conference Series20201546(1): 012131.
77 LI M, FAN H L. Free vibration behaviors and vibration correlation technique of hierarchical isogrid stiffened composite cylinders[J]. Thin-Walled Structures2021159: 107321.
78 ZAREI M, RAHIMI G H, HEMMATNEZHAD M. On the free vibrations of joined grid-stiffened composite conical-cylindrical shells[J]. Thin-Walled Structures2021161: 107465.
79 SHI H G, FAN H L, SHAO G J. Dynamic theory of composite anisogrid lattice conical shells with nonconstant stiffness and density[J]. Applied Mathematical Modelling2023115: 661-690.
80 ZHU H Y, FAN H L. Manufacturing and testing of CFRC sandwich cylinder with zero-Poisson’s-ratio Kevlar meta-honeycomb core layer[J]. Composites Science and Technology2022230: 109774.
81 LI M, LIN R B, HAN H, et al. Free vibration theory of inhomogeneous anisogrid stiffened cylinder[J]. Composite Structures2022290: 115509.
82 刘奎良. 重载无人机用碳纤维管铺层方式与连接性能研究[D]. 沈阳: 沈阳工业大学, 2021: 1-6.
  LIU K L. Study on layout mode and connecting performance of carbon fiber tubes for heavy-duty UAV[D]. Shenyang: Shenyang University of Technology, 2021: 1-6 (in Chinese).
83 赵伟超, 刘文韬. 预浸料吸湿性对无人机复合材料性能的影响[J]. 热固性树脂202136(5): 36-38, 47.
  ZHAO W C, LIU W T. Properties research of epoxy prepregs after wetting for the composites of UAV[J]. Thermosetting Resin202136(5): 36-38, 47 (in Chinese).
84 卢相学. 重载无人机碳纤维复合材料传动轴连接结构设计与分析[D]. 沈阳: 沈阳工业大学, 2022: 1-6.
  LU X X. Design and analysis of carbon fiber composite drive shaft connection structure for heavy-duty UAV[D]. Shenyang: Shenyang University of Technology, 2022: 1-6 (in Chinese).
85 段国晨, 王汝敏, 赵景丽, 等. 中小型无人机用国产碳纤维复合材料拉伸性能研究[J]. 纤维复合材料202239(3): 74-80.
  DUAN G C, WANG R M, ZHAO J L, et al. Tensile properties study of localization of carbon fiber composite for unmanned aerial vehicles[J]. Fiber Composites202239(3): 74-80 (in Chinese).
86 范云星, 李易红. 无人机用耐湿热中温环氧树脂体系研究[J]. 高科技纤维与应用202247(6): 55-60.
  FAN Y X, LI Y H. Study on the wet and heat resistant moderate temperature curing epoxy resin system for UAV[J]. Hi-Tech Fiber and Application202247(6): 55-60 (in Chinese).
87 程文, 曹岩. 无人机结构复合材料在海洋环境下的强度退化研究[J]. 西安工业大学学报202242(3): 247-252.
  CHENG W, CAO Y. Research on strength degradation of UAV structural composites material in marine environment[J]. Journal of Xi’an Technological University202242(3): 247-252 (in Chinese).
88 刘振东, 郑锡涛, 范雯静, 等. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报202243(6): 526117.
  LIU Z D, ZHENG X T, FAN W J, et al. Effect of process-induced residual stress on strength of UAV composite wing[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526117 (in Chinese).
89 毕广剑. 无人机复合蜂窝夹层机体结构抗毁伤性能研究[D]. 太原: 中北大学, 2022: 1-19.
  BI G J. Research on the anti-damage performance of UAV composite honeycomb sandwich airframe structure[D]. Taiyuan: North University of China, 2022: 1-19 (in Chinese).
90 ASADI H, AKBARZADEH A H, CHEN Z T, et al. Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys[J]. Smart Materials and Structures201524(4): 045022.
91 SUN S, FENG S S, ZHANG Q C, et al. Forced convection in additively manufactured sandwich-walled cylinders with thermo-mechanical multifunctionality[J]. International Journal of Heat and Mass Transfer2020149: 119161.
92 QIN Z M. Magneto-thermo-elasticity of an electroconductive circular cylindrical shell featuring nonlinear deformations[J]. International Journal of Engineering Science201048(12): 1797-1810.
93 MIKHASEV G I, ALTENBACH H, KORCHEVSKAYA E A. On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer[J]. Composite Structures2014113: 186-196.
Outlines

/