Reviews

Development needs and difficulty analysis for smart morphing aircraft

  • Xuhui ZHANG ,
  • Chunlei XIE ,
  • Sijia LIU ,
  • Ming YAN ,
  • Siyuan XING
Expand
  • China Academy of Aerospace Science and Innovation,Beijing 100176,China
E-mail: xiechl2022@163.com

Received date: 2023-07-10

  Revised date: 2023-08-14

  Accepted date: 2023-08-24

  Online published: 2023-09-01

Supported by

National Natural Science Foundation of China(52192633)

Abstract

With the development and application of artificial intelligent technologies in the military field, future intelligent warfare is to demonstrate the following traits: more complex cognition and decision making, more rapid changes and evolution, and access and denial in the whole warfare. The next-generation flight vehicles will be flight-demand oriented, artificial-intelligence centered, and changing flexible. Smart morphing aircraft, obviously characterized by intelligent technology and deformation technology, can have dual advantages of fast algorithm upgrades and extremely flexible hardware. It introduces new flight modes and combat capabilities, and will therefore become an important trend. However, smart morphing aircraft design requires complicated technologies. The costs of deformation, such as the increased complexity of the machine system, pose challenges to aerodynamic design, flight control, and structural implementation. The challenges include the full-profile optimization, structural application, and performance prediction and validation in the deformation process, where the core problem is to achieve the optimal design in each shape in the context of multidisciplinary engineering.

Cite this article

Xuhui ZHANG , Chunlei XIE , Sijia LIU , Ming YAN , Siyuan XING . Development needs and difficulty analysis for smart morphing aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 529302 -529302 . DOI: 10.7527/S1000-6893.2023.29302

References

1 JOSHI S, TIDWELL Z, CROSSLEY W, et al. Comparison of morphing wing stategies based upon aircraft performance impacts[C]∥ 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004.
2 ABDULRAHIM M, LIND R. Using avian morphology to enhance aircraft maneuverability[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2006.
3 SMITH K, BUTT J, VON SPAKOVSKY M, et al. A study of the benefits of using morphing wing technology in fighter aircraft systems[C]∥ Proceedings of the 39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
4 TAMAI M, MURPHY J, HU H. An experimental study of flexible membrane airfoils at low Reynolds numbers[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
5 KRESS R. Variable sweep wing design[C]∥ Proceedings of the Aircraft Prototype and Technology Demonstrator Symposium. Reston: AIAA, 1983.
6 韩传东, 梅守保. 变体飞机技术应用前景与装备谱系研究[J]. 航空科学技术202334(3): 10-15.
  HAN C D, MEI S B. Research on application prospect and equipment ancestry of morphing aircraft technology[J]. Aeronautical Science & Technology202334(3): 10-15 (in Chinese).
7 OPDYCKE L E. French aeroplanes before the great war (Schiffer Military History) [M]. Atglen: Schiffer Military History, 1999.
8 WEISSHAAR T. Morphing aircraft technology-new shapes for aircraft design[EB/OL]. (2006-10-01)[2023-07-01]. .
9 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术200750(8): 38-41.
  CUI E J, BAI P, YANG J M. Development path of intelligent morphing aircraft[J]. Aeronautical Manufacturing Technology200750(8): 38-41 (in Chinese).
10 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学, 2010.
  DONG E B. Research on realization mechanism and some key technologies of smart morphing aircraft structures[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese).
11 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报201435(1): 29-45.
  LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica201435(1): 29-45 (in Chinese).
12 李风雷, 卢昊, 宋闯, 等. 智能化战争与无人系统技术的发展[J]. 无人系统技术20181(2): 14-23.
  LI F L, LU H, SONG C, et al. Development of intelligent warfare and unmanned system technology[J]. Unmanned Systems Technology20181(2): 14-23 (in Chinese).
13 蔡明春, 吕寿坤. 智能化战争形态及其支撑技术体系[J]. 国防科技201738(1): 94-98.
  CAI M C, LYU S K. Preliminary probing into intelligent warfare and it supporting technology system[J]. National Defense Science & Technology201738(1): 94-98 (in Chinese).
14 王可杰, 詹静. 无人化作战将改变未来战争形态[J]. 军事文摘2020(19): 23-26.
  WANG K J, ZHAN J. Unmanned warfare will change the future war form[J]. Military Digest2020(19): 23-26 (in Chinese).
15 谢恺, 张东润, 梁小平. 透视智能化战争制胜机理嬗变[EB/OL]. (2022-04-26) [2023-07-01]. .
  XIE K, ZHANG D R, LIANG X P. Perspective on the transmutation of the winning mechanism of intelligent warfare [EB/OL]. (2022-04-26) [2023-07-01]. (in Chinese).
16 李婷婷, 刁联旺. 智能化态势认知技术与发展建议[J]. 指挥信息系统与技术202011(2): 55-58.
  LI T T, DIAO L W. Technology and development recommendations for intelligent situation awareness[J]. Command Information System and Technology202011(2): 55-58 (in Chinese).
17 常书杰, 张双喜, 陈骁. 集群作战:美要打造智能化军事体系[EB/OL].(2019-02-05) [2023-07-01]. .
  CHANG S J, ZHANG S X, CHEN X. Cluster warfare: U.S. wants to build an intelligent military system [EB/OL]. (2019-02-05) [2023-07-01]. (in Chinese).
18 张传良, 丁浩淼. 从杀伤链到杀伤网: 全域作战视角下的杀伤链战略[J]. 军事文摘2021(3): 7-12.
  ZHANG C L, DING H M. From kill chain to kill net-kill chain strategy from the perspective of global operations[J]. Military Digest2021(3): 7-12 (in Chinese).
19 陈龙, 王凤春, 叶培思. 前瞻智能化战场态势认知[EB/OL]. (2023-03-28) [2023-07-01]. .
  CHEN L, WANG F C, YE P S. Forward-looking intelligent battlefield situational awareness[EB/OL]. (2023-03-28) [2023-07-01]. (in Chinese).
20 胡磊, 智韬. 智能化作战有何特征[EB/OL]. (2020-06-11) [2023-07-01]. .
  HU L, ZHI T. What are the characteristics of intelligent warfare [EB/OL]. (2020-06-11) [2023-07-01]. (in Chinese).
21 BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures201122(9): 823-877.
22 WEISSHAAR T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft201350(2): 337-353.
23 MCGOWAN A M R, VICROY D D, BUSAN R C, et al. Perspectives on highly adaptive or morphing aircraft: RTO-MP-AVT-168 [R]. Washington, D.C.: NASA, 2009.
24 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报201937(3): 426-443.
  BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica201937(3): 426-443 (in Chinese).
25 梁尚军, 杨珂, 牛小康, 等. 变体飞机结构领域研究进展[J]. 飞机设计201737(6): 1-5.
  LIANG S J, YANG K, NIU X K, et al. Research progress on structural domain of morphing aircraft[J]. Aircraft Design201737(6): 1-5 (in Chinese).
26 SEIGLER T M, NEAL D A, BAE J S, et al. Modeling and flight control of large-scale morphing aircraft[J]. Journal of Aircraft200744(4): 1077-1087.
27 陆宇平, 何真, 吕毅. 变体飞行器技术[J]. 航空制造技术200851(22): 26-29.
  LU Y P, HE Z, LYU Y. Morphing aircraft technology[J]. Aeronautical Manufacturing Technology200851(22): 26-29 (in Chinese).
28 张平. 中等尺度变形内变体飞机结构设计与变形技术研究[D]. 南京: 南京航空航天大学, 2014.
  ZHANG P. Research on structural design and shape morphing techniques for morphing aircraft at midium scale deformation level[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
29 戎佳欣. 自适应鼓包进气道结构的柔性蒙皮技术研究[D]. 南京: 南京航空航天大学, 2018.
  RONG J X. Research on flexible skin techniques for adaptive bump inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
30 王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术202048(6): 5-11.
  WANG Q, LIU H H. Intelligent autonomous decision-making and control of morphing aircraft[J]. Modern Defence Technology202048(6): 5-11 (in Chinese).
31 GOECKS V G, LEAL P B, WHITE T, et al. Control of morphing wing shapes with deep reinforcement learning[C]∥ Proceedings of the 2018 AIAA Information Systems-AIAA Infotech @ Aerospace. Reston: AIAA, 2018.
32 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
33 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹2021(6): 14-23.
  ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variant aircraft[J]. Aerodynamic Missile Journal2021(6): 14-23 (in Chinese).
34 TUCKER V A, PARROTT G C. Aerodynamics of gliding flight in a falcon and other birds[J]. Journal of Experimental Biology197052(2): 345-367.
35 TUCKER V A. Gliding birds: The effect of variable wing span[J]. Journal of Experimental Biology1987133(1): 33-58.
36 战培国, 程娅红, 毛京明. 美国变形体飞机研究进展[J]. 航空制造技术201053(12): 54-56.
  ZHAN P G, CHENG Y H, MAO J M. Research development of morphing aircraft in United States[J]. Aeronautical Manufacturing Technology201053(12): 54-56 (in Chinese).
37 董彦非, 陈元恺, 彭金京. 可变后掠翼技术发展与展望[J]. 飞行力学201432(2): 97-100.
  DONG Y F, CHEN Y K, PENG J J. Development and prospect of variable swept wing[J]. Flight Dynamics201432(2): 97-100 (in Chinese).
38 Stuttgart Akaflieg. fs29 – Telescoping wing [EB/OL]. [2023-07-01]. .
39 MAUGHMER M. The evolution of sailplane wing design[C]∥ Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
40 WLEZIEN R, HORNER G, MCGOWAN A, et al. The aircraft morphing program[C]∥ 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1998.
41 DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]∥ Proceedings of the 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984.
42 MILLER G D. Active flexible wing (AFW) technology [EB/OL]. (1988-02-01) [2023-07-01]. .
43 HEEG J, SPAIN V, FLORANCE J, et al. Experimental results from the active aeroelastic wing wind tunnel test program[C]∥ Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
44 PENDLETON E W, BESSETTE D, FIELD P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft200037(4): 554-561.
45 VORACEK D, PENDLETON E, REICHENBACH E, et al. Active aeroelastic wing phase-I flight research through January, 2003: NASA/TM-2003-210741 [R]. Washington, D.C.: NASA, 2003.
46 KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures200415(4): 261-267.
47 KUDVA J N, MARTIN C A, SCHERER L B, et al. Overview of the DARPA/AFRL/NASA smart wing program[C]∥ 1999 Symposium on Smart Structures and Materials. Proc SPIE 3674, Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies. 1999, 3674: 230-236.
48 KUDVA J N, SANDERS B P, PINKERTON-FLORANCE J L, et al. Overview of the DARPA/AFRL/NASA smart wing phase II program[C]∥ SPIE's 8th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4332, Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies. 2001, 4332: 383-389.
49 KUDVA J N, SANDERS B P, PINKERTON-FLORANCE J L, et al. DARPA/AFRL/NASA smart wing program: Final overview[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 37-43.
50 BARTLEY-CHO J D, WANG D P, MARTIN C A, et al. Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J]. Journal of Intelligent Material Systems and Structures200415(4): 279-291.
51 PITT D M, DUNNE J P, WHITE E V. SAMPSON smart inlet design overview and wind tunnel test: part I: Design overview[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 13-23.
52 PITT D M, DUNNE J P, WHITE E V. SAMPSON smart inlet design overview and wind tunnel test: part II: Wind tunnel test[C]∥ SPIE's 9th Annual International Symposium on Smart Structures and Materials. Proc SPIE 4698Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies. 2002, 4698: 24-36.
53 PITT D, DUNNE J, WHITE E, et al. SAMPSON smart inlet SMA powered adaptive lip design and static test[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
54 RODRIGUEZ A. Morphing aircraft technology survey[C]∥ Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
55 IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
56 SIMPSON A D. Design and evaluation of inflatable wings for UAVs [D]. Lexington: University of Kentucky, 2008.
57 ?ZGEN S, YAMAN Y, ?AHIN M, et al. Morphing air vehicle concepts [C]∥ Proceedings of the International Workshop on Unmanned Vehicles-UVW. 2010.
58 BYE D, MCCLURE P. Design of a morphing vehicle[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
59 KHEONG B L, JACOB J. In flight aspect ratio morphing using inflatable wings[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
60 ERBIL M A, PRIOR S D, KARAMANOGLU M, et al. Reconfigurable unmanned aerial vehicles [C]∥ Proceedings of the International Conference on Manufacturing and Engineering Systems Proceedings. 2009.
61 ANDERSEN G, COWAN D, PIATAK D. Aeroelastic modeling, analysis and testing of a morphing wing structure[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
62 BOWMAN J, SANDERS B, CANNON B, et al. Development of next generation morphing aircraft structures[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
63 FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
64 SULEMAN A, MONIZ P A. Active aeroelastic aircraft structures[C]∥ III European Conference on Computational Mechanics. 2006.
65 SULEMAN A, MONIZ P A. Active aeroelastic aircraft structures[C]∥III European Conference on Computational Mechanics. Berlin: Springer Netherlands, 2008: 5.
66 SCHWEIGER J, SULEMAN A, KUZMINA S, et al. MDO concepts for an European research project on active aeroelastic aircraft[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002.
67 AMPRIKIDIS M, COOPER J. Development of smart spars for active aeroelastic structures [C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003.
68 最终下马的强 6攻击机[EB/OL]. (2018-09-15) [2023-07-01]. .
  The Nanchang Q-6 was finally cancelled [EB/OL]. (2018-09-15) [2023-07-01]. (in Chinese).
69 中国科学技术协会. 智能可变形飞行器发展前景及我们的选择[M]. 北京: 中国科学技术出版社, 2010.
  China Association for Science and Technology. Development prospect of smarting morphing aircraft and our choice[M]. Beijing: China Science and Technology Press, 2010 (in Chinese).
70 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997.
  FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese).
71 武文康, 张彬乾. 战斗机气动布局设计[M]. 西安: 西北工业大学出版社, 2005.
  WU W K, ZHANG B Q. Aerodynamic layout design of fighter[M]. Xi’an: Northwestern Polytechnical University Press, 2005 (in Chinese).
72 帕玛迪. 飞机的性能、稳定性、动力学与控制[M].北京: 航空工业出版社, 2013.
  PAMADI B N. Performance, stability, dynamics, and control of airplanes [M]. Beijing: Aviation Industry Press, 2013 (in Chinese).
73 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(5): 623344.
  HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623344 (in Chinese).
74 陈钱, 白鹏, 李锋. 飞行器变后掠过程非定常气动特性形成机理[J]. 力学学报201345(3): 307-313.
  CHEN Q, BAI P, LI F. Study on the formation mechanisms of unsteady aerodynamic characteristics of morphing flight vehicle in sweep-varying process[J]. Chinese Journal of Theoretical and Applied Mechanics201345(3): 307-313 (in Chinese).
75 马文风. 高超声速变形飞行器建模与纵向鲁棒控制方法研究[D]. 长沙: 国防科技大学, 2017.
  MA W F. Research on modeling and longitudinal robust control methods for hypersonic morphing aircrafts[D]. Changsha: National University of Defense Technology, 2017 (in Chinese).
76 殷明. 变体飞行器变形与飞行的协调控制问题研究[D]. 南京: 南京航空航天大学, 2016.
  YIN M. Coordinated control of deformation and flight for morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
77 李文成. 变体飞行器动力学建模与稳定性分析及控制[D]. 南京: 南京航空航天大学, 2018.
  LI W C. Dynamics modeling, stability analysis and control of morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
Outlines

/