Fluid Mechanics and Flight Mechanics

Liutex based data-driven turbulence model correction

  • Jiajun LONG ,
  • Chenpiao LIU ,
  • Fei QIN ,
  • Jiale ZHANG ,
  • Shengguan XU ,
  • Yisheng GAO
Expand
  • 1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.School of Aerospace Engineering,Xiamen University,Xiamen  361102,China
    3.School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing  211816,China

Received date: 2023-09-13

  Revised date: 2023-09-28

  Accepted date: 2023-10-17

  Online published: 2023-10-24

Supported by

National Natural Science Foundation of China(12102185);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution(2018);Nanjing University of Aeronautics and Astronautics Innovation Program(xcxjh20220116)

Abstract

The current widely used turbulence models often exhibit significant discrepancies with experimental results for largely separated flows primarily due to the strong adverse pressure gradients present in the flows, which violate the fundamental assumptions of turbulence models. To enhance the computational accuracy for largely separated flow problems, it is necessary to modify the turbulence models. A combined approach of field inversion and data-driven methods is proposed to introduce a neural network for the correction of the Spalart-Allmaras (S-A) one-equation model based on Liutex. Initially, correction coefficients for the S-A one-equation model generation terms are obtained through field inversion with discrete adjoint. Feature selection indicates that Liutex exhibits the highest correlation with the correction coefficients for the S-A one-equation model generation terms and is suitable as an input for the neural network. Subsequently, Liutex and other variables are used as inputs to construct a neural network to approximate the correction coefficients for the S-A model generation terms, establishing the neural network structure for the generation term correction coefficients. This correction method is validated through separated flow results for the S809 and S814 airfoils, demonstrating the ability to significantly improve the computational accuracy of largely separated flows.

Cite this article

Jiajun LONG , Chenpiao LIU , Fei QIN , Jiale ZHANG , Shengguan XU , Yisheng GAO . Liutex based data-driven turbulence model correction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 129579 -129579 . DOI: 10.7527/S1000-6893.2023.29579

References

1 阎超. 航空CFD四十年的成就与困境[J]. 航空学报202243(10): 526490.
  YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica202243(10): 526490 (in Chinese).
2 MALIK M R, BUSHNELL D M. Role of computational fluid dynamics and wind tunnels in aeronautics R&D: NASA/TP-2012-217602[R]. Washington, D.C.: NASA, 2012.
3 HOLLAND J. Integrated field inversion and machine learning with embedded neural network training for turbulence modeling[D]. Maryland: University of Maryland, 2019.
4 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报201836(3): 463-469.
  ZHU W Q, XIAO Z X, FU S. The effects of flight velocity on jet noise are simulated by improved delayed detached eddy simulation with the modification of grid scale definition[J]. Acta Aerodynamica Sinica201836(3): 463-469 (in Chinese).
5 LOZANO-DURáN A, BOSE S T, MOIN P. Performance of wall-modeled LES with boundary-layer-conforming grids for external aerodynamics[J]. AIAA Journal202160(2): 747-766.
6 WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. La C?nada: DCW Industries, Inc., 2006.
7 HEY T. The fourth paradigm-Data-intensive scientific discovery[M]∥KURBANO?LU S, AL U, ERDO?AN P L, et al. Communications in computer and information science. Berlin: Springer, 2012.
8 DURAISAMY K, SPALART P R, RUMSEY C L. Status, emerging ideas and future directions of turbulence modeling research in aeronautics: NASA/TM-2017-219682 [R]. Washington, D.C.: NASA, 2017.
9 YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]∥13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway: IEEE Press, 2012: 38-42.
10 LING J, TEMPLETON J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty[J]. Physics of Fluids201527(8): 085103.
11 SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal201755(7): 2215-2227.
12 TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
13 ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]∥22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015.
14 WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids20172(3): 034603.
15 尹宇辉, 李浩然, 张宇飞, 等. 机器学习辅助湍流建模在分离流预测中的应用[J]. 空气动力学学报202139(2): 23-32.
  YIN Y H, LI H R, ZHANG Y F, et al. Application of machine learning assisted turbulence modeling in flow separation prediction[J]. Acta Aerodynamica Sinica202139(2): 23-32 (in Chinese).
16 LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics2016807: 155-166.
17 ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids201931(1): 015105.
18 王铎, 刘超群, 蔡小舒, 等. 基于流动仿真大数据应对旋涡-湍流的研究进展[J]. 力学季刊202243(2): 197-216.
  WANG D, LIU C Q, CAI X S, et al. Tackling vortex/turbulence challenges based on direct numerical simulation data in fluid science[J]. Chinese Quarterly of Mechanics202243(2): 197-216 (in Chinese).
19 王述之, 战林浩, 曹博超, 等. 基于直接数值模拟数据和神经网络的湍流封闭模型构建[J]. 水动力学研究与进展(A辑)202035(2): 141-154.
  WANG S Z, ZHAN L H, CAO B C, et al. Turbulence closure model based on neural network and direct numerical simulation data[J]. Chinese Journal of Hydrodynamics202035(2): 141-154 (in Chinese).
20 张珍, 叶舒然, 岳杰顺, 等. 基于组合神经网络的雷诺平均湍流模型多次修正方法[J]. 力学学报202153(6): 1532-1542.
  ZHANG Z, YE S R, YUE J S, et al. A combined neural network and multiple modification strategy for Reynolds-averaged Navier-Stokes turbulence modeling[J]. Chinese Journal of Theoretical and Applied Mechanics202153(6): 1532-1542 (in Chinese).
21 DURAISAMY K, ZHANG Z J, SINGH A P. New approaches in turbulence and transition modeling using data-driven techniques[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
22 RUMSEY C L, COLEMAN G N, WANG L. In search of data-driven improvements to RANS models applied to separated flows[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022.
23 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报202142(4): 524704.
  HE C X, DENG Z W, LIU Y Z. Turbulent flow data assimilation and its applications[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524704 (in Chinese).
24 闫重阳, 张宇飞, 陈海昕. 基于离散伴随的流场反演在湍流模拟中的应用[J]. 航空学报202142(4): 524695.
  YAN C Y, ZHANG Y F, CHEN H X. Application of field inversion based on discrete adjoint method in turbulence modeling[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524695 (in Chinese).
25 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报202038(3): 413-431, 478.
  LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica202038(3): 413-431, 478 (in Chinese).
26 LIU C Q, GAO Y S, DONG X R, et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics201931(2): 205-223.
27 LIU C Q, GAO Y S, TIAN S L, et al. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of Fluids201830(3): 035103.
28 GAO Y S, LIU C Q. Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Physics of Fluids201830(8): 085107.
29 LIU C Q, XU H Y, CAI X S, et al. Liutex and its applications in turbulence research[M]. New York: Academic Press, 2021.
30 CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics19902(5): 765-777.
31 EPPSB P. Review of vortex identification methods[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
32 WANG Y Q, GAO Y S, LIU J M, et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition[J]. Journal of Hydrodynamics201931(3): 464-474.
33 YU Y F, SHRESTHA P, NOTTAGE C, et al. Principal coordinates and principal velocity gradient tensor decomposition[J]. Journal of Hydrodynamics202032(3): 441-453.
34 SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
35 SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
36 GILES M B, PIERCE N A. An introduction to the adjoint approach to design[J]. Flow, Turbulence and Combustion200065(3): 393-415.
37 BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing199516(5): 1190-1208.
38 SOMERS D M. Design and experimental results for the S809 airfoil[R]. Colorado: National Renewable Energy Laboratory, 1997.
39 ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design[J]. AIAA Journal201654(3): 828-846.
40 VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in python[J]. Nature Methods202017(3): 261-272.
41 PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[EB/OL]. (2019-12-03)[2023-09-13].
42 SOMERS D M. Design and experimental results for the S814 airfoil[R/OL]. (1997-01)[2023-09-13]. .
Outlines

/