ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface
Received date: 2023-07-07
Revised date: 2023-09-28
Accepted date: 2023-10-11
Online published: 2023-10-13
Modern warfare with complex and changeable battlefield environment requires rapid maneuvering turning ability of projectiles and missles at large angles. However,traditional aerodynamic rudders cannot meet the high maneuverability turning requirements of missile aircraft over 90°. This paper innovatively proposes a new type of flexible control mechanism—A cross-shaped flexible control surface with a large-scale expandable and variable configuration to generate excess aerodynamic control force and realize the rapid maneuvering of projectiles and missles; meanwhile,this paper analyzes the aerodynamic control force generated by a reduced scale cross-shaped flexible control surface with a variable configuration in a wind tunnel experiment. The experimental results show that,compared with the symmetrical cross-shaped flexible control surface without configuration change,the cross-shaped flexible control surface with changed configuration can be basically stabilized in the direction of the retracted control rope in cases of control rope shrinking at different mounting points. No more rotation and swing appear on the side of the mounting point. This result indicates that the cross-shaped flexible control surface with changed configuration can produce a relatively stable radial control force; quantitative analysis of the aerodynamic control force measurement values further confirms the directivity of the aerodynamic control force on the flexible surface; an available radial force with an aerodynamic coefficient of about 0.29–0.34 is produced with the incoming flow being Re=2.3×105 and the control rope contraction ratio 0.9. This research confirms the availability of the control force of the variable configuration cross-shaped flexible surface,and provides a basis for further research on the aerodynamic characteristics of the flexible control force and the design of the variable configuration control strategy.
Yihui HAN , Jun HU , Yong YU , Jianqiao YU . Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 129280 -129280 . DOI: 10.7527/S1000-6893.2023.29280
1 | 李梓源, 于剑桥, 李佳讯. 基于H-BSO算法的导弹敏捷转弯弹道优化[J]. 战术导弹技术, 2023(3): 32-41. |
LI Z Y, YU J Q, LI J X. Ballistic optimization of missile agile turning based on H-BSO algorithm[J]. Tactical Missile Technology, 2023(3): 32-41 (in Chinese). | |
2 | 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8): 327262. |
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327262 (in Chinese). | |
3 | 赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43(4): 454-464. |
ZHAO X Y, YU J Q. Novel non-singular terminal sliding mode control for missile’s agile turn[J]. Journal of Astronautics, 2022, 43(4): 454-464 (in Chinese). | |
4 | WISE K A, ROY D J B. Agile missile dynamics and control[J]. Journal of Guidance,Control,and Dynamics, 1998, 21(3): 441-449. |
5 | CHADWICK W R. Augmentation of high-altitude maneuver performance of a tail-controlled missile using lateral thrust: ADA-328973[R]. Belvoir: Defense Technical Information Center, 1997. |
6 | 侯满义, 解增辉, 范惠林. 复合控制空空导弹大机动控制律设计及仿真[J]. 弹道学报, 2011, 23(4): 22-26. |
HOU M Y, XIE Z H, FAN H L. Control law design and simulation for high maneuvering air-to-air missile with compound control[J]. Journal of Ballistics, 2011, 23(4): 22-26 (in Chinese). | |
7 | 纪彦宇. 直/气复合控制拦截弹控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
JI Y Y. Research on control & strategy method of side-jet & aerodynamic fins compound of intercoptor missile[D].Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
8 | 彭继平. 敏捷空空导弹复合控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
PENG J P. Research on blended control of agile air-to-air missile[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
9 | 马悦悦. 敏捷导弹大攻角高机动飞行控制方法研究[D]. 北京: 北京理工大学, 2016. |
MA Y Y. Research on flight control design under high angle of attack maneuvering for agile missiles[D].Beijing: Beijing Institute of Technology, 2016 (in Chinese). | |
10 | 李宇辉, 赵敏, 陈奇, 等. 复杂环境下翼伞系统的组合式航迹规划[J]. 航空学报, 2021, 42(6): 324566. |
LI Y H, ZHAO M, CHEN Q, et al. Combined trajectory planning of parafoil systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324566 (in Chinese). | |
11 | 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6): 122593. |
ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122593 (in Chinese). | |
12 | 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7): 1189-1200. |
ZHU X, CAO Y H. Effects of arc-anhedral angle,airfoil and leading edge cut on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1189-1200 (in Chinese). | |
13 | 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10): 3121-3130. |
CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3121-3130 (in Chinese). | |
14 | FIELDS T D. Evaluation of control line reefing systems for circular parachutes[J]. Journal of Aircraft, 2016, 53(3): 855-860. |
15 | FAGLEY C P, SEIDEL J, MCLAUGHLIN T E, et al. Computational study of air drop control mechanisms for cruciform parachutes[C]∥ 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. |
16 | 黄云尧, 武士轻, 张扬. 几何形状对十字伞充气和滑翔性能的影响[J]. 航天返回与遥感, 2022, 43(5): 48-58. |
HUANG Y Y, WU S Q, ZHANG Y. Effects of geometry on the inflation and gliding performance of cruciform parachutes[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(5): 48-58 (in Chinese). | |
17 | DELLICKER S, BENNEY R, PATEL S, et al. Performance,control,and simulation of the Affordable Guided Airdrop System[C]∥ Modeling and Simulation Technologies Conference. Reston: AIAA, 2000. |
18 | POTVIN J, PAPKE J, BRIGHTON E, et al. Glide performance study of standard and hybrid cruciform parachutes[C]∥ 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003. |
19 | GAO X L, ZHANG Q B, CHEN Q, et al. Fluid-structure interactions on steerable cruciform parachute inflation dynamics[J]. IOP Conference Series: Materials Science and Engineering, 2020, 751(1): 012010. |
20 | FIELDS T D, YAKIMENKO O A. The use of a steerable single-actuator cruciform parachute for targeted payload return[C]∥ 2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-8. |
21 | HALLER J, FIELDS T, YAKIMENKO O A. Precision aerial delivery with a steerable cruciform parachute[C]∥ 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. |
22 | HERRINGTON S, RENZELMAN J, FIELDS T, et al. Modeling and control of a steerable cruciform parachute system through experimental testing[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
23 | HERRINGTON S M, SACKETT T, FIELDS T, et al. Experimental investigation into the effects of geometry on the glide performance of cruciform parachutes[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
24 | 马瑞鑫. 圆形降落伞下降轨迹控制研究[D]. 大连: 大连理工大学, 2020. |
MA R X. Research on circular parachute descent trajectory control[D].Dalian: Dalian University of Technology, 2020 (in Chinese). | |
25 | 李龙恩. 局部伞绳收放对降落伞轨迹的影响与投放试验[D]. 大连: 大连理工大学, 2019. |
LI L E. Influence of partial parachute retracting on parachute trajectory and airdrop test[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
26 | LEVIN D, SHPUND Z. Canopy geometry effect on the aerodynamic behavior of cross-type parachutes[J]. Journal of Aircraft, 1997, 34(5): 648-652. |
27 | JORGENSEN D, COCKRELL D. Aerodynamics and performance of cruciform parachute canopies[C]∥ 7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981. |
28 | JORGENSEN D. Experimental determination of the input parameters to the parachute equations of motion[C]∥ 8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984. |
29 | STAFFORD J D. Cruciform parachute aerodynamics[D]. Leicester: University of Leicester, 1982. |
30 | SHEN C Q. Flow field characteristics around bluff parachute canopies[D]. Leicester: University of Leicester, 1987. |
31 | SHEN C Q, COCKRELL D J. Aerodynamic characteristics and flow round cross parachutes in steady motion[J]. Journal of Aircraft, 1988, 25(4): 317-323. |
32 | SHEN C, COCKRELL D. Flow field characteristics around cup-like bluff bodies, parachute canopies: AIAA-1991-0855-CP[R]. Reston: AIAA, 1991. |
33 | SHPUND Z, LEVIN D. Static and dynamic coefficients of a cross-type parachute[J]. Journal of Aircraft, 1994, 31(1): 132-137. |
34 | 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015. |
LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015 (in Chinese). | |
35 | HANCOCK T J, LINGARD J S. Subsonic wind tunnel investigation into the effects of parachute canopy material on inflation time[C]∥ 26th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2022. |
36 | 孙昊, 孙青林, 滕海山, 等. 复杂环境下考虑动力学约束的翼伞轨迹规划[J]. 航空学报, 2021, 42(3): 324301. |
SUN H, SUN Q L, TENG H S, et al. Trajectory planning for parafoil system considering dynamic constraints in complicated environment[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 324301 (in Chinese). | |
37 | XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 45-54. |
/
〈 |
|
〉 |